論文の概要: Enhancing Whole Slide Image Classification through Supervised Contrastive Domain Adaptation
- arxiv url: http://arxiv.org/abs/2412.04260v1
- Date: Thu, 05 Dec 2024 15:39:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:42:16.489766
- Title: Enhancing Whole Slide Image Classification through Supervised Contrastive Domain Adaptation
- Title(参考訳): 教師付きコントラスト領域適応による全スライド画像分類の強化
- Authors: Ilán Carretero, Pablo Meseguer, Rocío del Amor, Valery Naranjo,
- Abstract要約: ドメインシフトは、染色およびデジタル化プロトコルのホスピタル内およびホスピタル間変動に起因する一般的な現象である。
この変動に対処する新しいドメイン適応法を示す。
- 参考スコア(独自算出の注目度): 1.7641392161755438
- License:
- Abstract: Domain shift in the field of histopathological imaging is a common phenomenon due to the intra- and inter-hospital variability of staining and digitization protocols. The implementation of robust models, capable of creating generalized domains, represents a need to be solved. In this work, a new domain adaptation method to deal with the variability between histopathological images from multiple centers is presented. In particular, our method adds a training constraint to the supervised contrastive learning approach to achieve domain adaptation and improve inter-class separability. Experiments performed on domain adaptation and classification of whole-slide images of six skin cancer subtypes from two centers demonstrate the method's usefulness. The results reflect superior performance compared to not using domain adaptation after feature extraction or staining normalization.
- Abstract(参考訳): 病理組織像の分野でのドメインシフトは、染色およびデジタル化プロトコルの宿主内および宿主間変動に起因する一般的な現象である。
一般化されたドメインを作成することが可能なロバストモデルの実装は、解決の必要性を表している。
本研究では,複数の中心から得られた病理像の多様性に対処する新しい領域適応法を提案する。
特に,ドメイン適応の達成とクラス間分離性の向上のために,教師付きコントラスト学習アプローチにトレーニング制約を加える。
2つのセンターから得られた6種類の皮膚癌サブタイプの領域適応と全スライディング画像の分類実験により,本手法の有用性が示された。
その結果, 特徴抽出や染色正規化の後にドメイン適応を使わなかった場合に比べ, 性能が優れていた。
関連論文リスト
- Stain-Invariant Representation for Tissue Classification in Histology Images [1.1624569521079424]
染色摂動行列を用いたトレーニング画像の染色増分版を生成するフレームワークを提案する。
大腸癌画像のクロスドメイン多クラス組織型分類における提案モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-11-21T23:50:30Z) - Domain-Adaptive Learning: Unsupervised Adaptation for Histology Images
with Improved Loss Function Combination [3.004632712148892]
本稿では,H&E染色組織像を対象とした非教師なし領域適応(UDA)のための新しいアプローチを提案する。
本手法では, 組織像に特有の課題に対処するために, 慎重に選択された既存の損失関数とともに, 新たな損失関数を提案する。
提案手法は, 組織像の最先端技術を超え, 精度, 堅牢性, 一般化の面で広く評価されている。
論文 参考訳(メタデータ) (2023-09-29T12:11:16Z) - A2V: A Semi-Supervised Domain Adaptation Framework for Brain Vessel Segmentation via Two-Phase Training Angiography-to-Venography Translation [4.452428104996953]
画像の異なる脳血管セグメンテーションのための半教師付きドメイン適応フレームワークを提案する。
本フレームワークは,注釈付血管造影と限られた数の血管造影に頼り,画像から画像への翻訳とセマンティックセグメンテーションを実現する。
論文 参考訳(メタデータ) (2023-09-12T09:12:37Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
乳がんのヘマトキシリンおよびエオシン染色像におけるいくつかの分類課題に対する自己監督アルゴリズムを提案する。
本手法は,いくつかの乳がんデータセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-11-14T18:16:36Z) - Unsupervised Domain Adaptation Using Feature Disentanglement And GCNs
For Medical Image Classification [5.6512908295414]
本稿では,グラフニューラルネットワークを用いた教師なし領域適応手法を提案する。
分布シフトを伴う2つの挑戦的医用画像データセットの分類法について検討した。
実験により,本手法は他の領域適応法と比較して最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2022-06-27T09:02:16Z) - Margin Preserving Self-paced Contrastive Learning Towards Domain
Adaptation for Medical Image Segmentation [51.93711960601973]
クロスモーダル医療画像セグメンテーションのための自己ペースコントラスト学習モデルを保存する新しいマージンを提案する。
プログレッシブに洗練されたセマンティックプロトタイプの指導により、埋め込み表現空間の識別性を高めるために、コントラスト損失を減少させる新しいマージンが提案される。
クロスモーダル心セグメンテーションタスクの実験は、MPSCLが意味セグメンテーション性能を大幅に改善することを示した。
論文 参考訳(メタデータ) (2021-03-15T15:23:10Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
我々は、Synergistic Image and Feature Alignment (SIFA)と名付けられた新しい教師なしドメイン適応フレームワークを提案する。
提案するSIFAは、画像と特徴の両方の観点から、ドメインの相乗的アライメントを行う。
2つの異なるタスクに対する実験結果から,SIFA法は未ラベル対象画像のセグメンテーション性能を向上させるのに有効であることが示された。
論文 参考訳(メタデータ) (2020-02-06T13:49:47Z) - Cross-Domain Few-Shot Classification via Learned Feature-Wise
Transformation [109.89213619785676]
各クラスにラベル付き画像がほとんどない新しいカテゴリを識別することを目的としている。
既存のメトリックベースの数ショット分類アルゴリズムは、クエリ画像の特徴埋め込みとラベル付き画像の特徴埋め込みを比較して、カテゴリを予測する。
有望な性能が証明されているが、これらの手法は目に見えない領域に一般化できないことが多い。
論文 参考訳(メタデータ) (2020-01-23T18:55:43Z) - CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency [119.45667331836583]
教師なしのドメイン適応アルゴリズムは、あるドメインから学んだ知識を別のドメインに転送することを目的としている。
本稿では,新しい画素単位の対向領域適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-09T19:00:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。