論文の概要: LocalSR: Image Super-Resolution in Local Region
- arxiv url: http://arxiv.org/abs/2412.04314v1
- Date: Thu, 05 Dec 2024 16:30:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:40:34.455302
- Title: LocalSR: Image Super-Resolution in Local Region
- Title(参考訳): ローカルSR:画像のスーパーリゾリューション
- Authors: Bo Ji, Angela Yao,
- Abstract要約: 低解像度画像の局所領域のみを復元する新しいタスクであるLocalSRを提案する。
当社のアプローチは、低複雑性を減らし、この地域にのみ焦点を絞った変種よりも優れています。
- 参考スコア(独自算出の注目度): 42.85362760049813
- License:
- Abstract: Standard single-image super-resolution (SR) upsamples and restores entire images. Yet several real-world applications require higher resolutions only in specific regions, such as license plates or faces, making the super-resolution of the entire image, along with the associated memory and computational cost, unnecessary. We propose a novel task, called LocalSR, to restore only local regions of the low-resolution image. For this problem setting, we propose a context-based local super-resolution (CLSR) to super-resolve only specified regions of interest (ROI) while leveraging the entire image as context. Our method uses three parallel processing modules: a base module for super-resolving the ROI, a global context module for gathering helpful features from across the image, and a proximity integration module for concentrating on areas surrounding the ROI, progressively propagating features from distant pixels to the target region. Experimental results indicate that our approach, with its reduced low complexity, outperforms variants that focus exclusively on the ROI.
- Abstract(参考訳): 標準のシングルイメージ・スーパーレゾリューション(SR)は、画像全体をアップサンプルし、復元する。
しかし、いくつかの現実世界のアプリケーションは、ライセンスプレートや顔のような特定の領域でのみ高解像度を必要とするため、画像全体の超高解像度化と、関連するメモリと計算コストは不要である。
低解像度画像の局所領域のみを復元する新しいタスクであるLocalSRを提案する。
そこで本稿では、コンテキストベース局所超解像(CLSR)を提案し、関心領域の特定領域(ROI)のみを超解き、全体像を文脈として活用する。
提案手法では,3つの並列処理モジュールを使用する:ROIを超解するベースモジュール,画像全体から有用な特徴を収集するグローバルコンテキストモジュール,ROIを取り巻く領域に集中する近接統合モジュール。
実験結果から,低複雑性化によるアプローチはROIにのみ焦点を絞った変種よりも優れていたことが示唆された。
関連論文リスト
- Bridging the Domain Gap: A Simple Domain Matching Method for
Reference-based Image Super-Resolution in Remote Sensing [8.36527949191506]
近年、参照ベース画像超解像(RefSR)は、画像超解像(SR)タスクにおいて優れた性能を示している。
既存のRefSRモデルとシームレスに統合可能なドメインマッチング(DM)モジュールを導入する。
我々の分析では、これらの領域のギャップは異なる衛星でしばしば生じており、我々のモデルはこれらの課題に効果的に対処している。
論文 参考訳(メタデータ) (2024-01-29T08:10:00Z) - Recursive Generalization Transformer for Image Super-Resolution [108.67898547357127]
本稿では,大域空間情報を捕捉し,高分解能画像に適した画像SRのための再帰一般化変換器(RGT)を提案する。
我々は,RG-SAと局所的自己意識を組み合わせることで,グローバルな文脈の活用を促進する。
我々のRGTは最近の最先端の手法よりも定量的に質的に優れている。
論文 参考訳(メタデータ) (2023-03-11T10:44:44Z) - Best-Buddy GANs for Highly Detailed Image Super-Resolution [71.13466303340192]
我々は,低分解能(LR)入力に基づいて高分解能(HR)画像を生成する単一画像超解像(SISR)問題を考える。
このラインに沿ったほとんどのメソッドは、SISRタスクに十分な柔軟性がない、事前定義されたシングルLRシングルHRマッピングに依存しています。
リッチディテールSISRのためのベストバディGAN(Beby-GAN)を提案する。
イミュータブルな1対1の制約を緩和することで、推定されたパッチを動的に最高の監視を求めることができる。
論文 参考訳(メタデータ) (2021-03-29T02:58:27Z) - Learning Omni-frequency Region-adaptive Representations for Real Image
Super-Resolution [37.74756727980146]
リアル画像のスーパーレゾリューション(RealSR)問題を解決する鍵は、インフォメーティブでコンテンツアウェアな機能表現の学習にあります。
本稿では,両課題に対処するOmni- frequency Region-Adaptive Network (ORNet)を提案する。
論文 参考訳(メタデータ) (2020-12-11T05:17:38Z) - Deep Cyclic Generative Adversarial Residual Convolutional Networks for
Real Image Super-Resolution [20.537597542144916]
我々は、LRとHRデータ分布間の領域整合性を維持するために、深い循環ネットワーク構造を考える。
本稿では,LRからHRドメインへの変換のためのGAN(Generative Adversarial Network)フレームワークを用いた学習により,超解像残留周期生成逆ネットワーク(SRResCycGAN)を提案する。
論文 参考訳(メタデータ) (2020-09-07T11:11:18Z) - Component Divide-and-Conquer for Real-World Image Super-Resolution [143.24770911629807]
本稿では,DRealSR,DRealSR,および分割コンカレント・コンカレント・スーパー・リゾリューション・ネットワークの大規模画像スーパー・リゾリューション・データセットを提案する。
DRealSRは、さまざまな現実世界の劣化プロセスを備えた新しいSRベンチマークを確立する。
SR に対して Component Divide-and-Conquer (CDC) モデルと Gradient-Weighted (GW) 損失を提案する。
論文 参考訳(メタデータ) (2020-08-05T04:26:26Z) - Image Super-Resolution with Cross-Scale Non-Local Attention and
Exhaustive Self-Exemplars Mining [66.82470461139376]
本稿では,再帰型ニューラルネットワークに統合されたCS-NLアテンションモジュールを提案する。
新しいCS-NLと局所的および非局所的非局所的前駆体を強力な再帰核融合セルで組み合わせることで、単一の低分解能画像内でよりクロススケールな特徴相関を見出すことができる。
論文 参考訳(メタデータ) (2020-06-02T07:08:58Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
我々は,超解像残差畳み込み生成共役ネットワーク(SRResCGAN)を提案する。
これは、生成したLRドメインからHRドメインの画素単位の監督でモデルを逆トレーニングすることで、現実世界の劣化設定に従う。
提案するネットワークは,画像の高精細化と凸最適化によるエネルギーベース目的関数の最小化により,残差学習を利用する。
論文 参考訳(メタデータ) (2020-05-03T00:12:38Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) は、それまで文献になかった解像度で高解像度でリアルな画像を生成する。
本手法は, 従来よりも高分解能, スケールファクターの知覚品質において, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-03-08T16:44:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。