論文の概要: GRAM: Generalization in Deep RL with a Robust Adaptation Module
- arxiv url: http://arxiv.org/abs/2412.04323v1
- Date: Thu, 05 Dec 2024 16:39:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:43:00.107920
- Title: GRAM: Generalization in Deep RL with a Robust Adaptation Module
- Title(参考訳): GRAM:ロバスト適応モジュールによる深部RLの一般化
- Authors: James Queeney, Xiaoyi Cai, Mouhacine Benosman, Jonathan P. How,
- Abstract要約: 本研究では,深層強化学習における動的一般化の枠組みを提案する。
本稿では,分散環境と分散環境の両方を識別・反応する機構を提供するロバスト適応モジュールを提案する。
我々のアルゴリズムであるGRAMは,展開時の分布内および分布外シナリオにまたがる強力な一般化性能を実現する。
- 参考スコア(独自算出の注目度): 29.303051759538416
- License:
- Abstract: The reliable deployment of deep reinforcement learning in real-world settings requires the ability to generalize across a variety of conditions, including both in-distribution scenarios seen during training as well as novel out-of-distribution scenarios. In this work, we present a framework for dynamics generalization in deep reinforcement learning that unifies these two distinct types of generalization within a single architecture. We introduce a robust adaptation module that provides a mechanism for identifying and reacting to both in-distribution and out-of-distribution environment dynamics, along with a joint training pipeline that combines the goals of in-distribution adaptation and out-of-distribution robustness. Our algorithm GRAM achieves strong generalization performance across in-distribution and out-of-distribution scenarios upon deployment, which we demonstrate on a variety of realistic simulated locomotion tasks with a quadruped robot.
- Abstract(参考訳): 現実世界の環境での深層強化学習の信頼性の高い展開には、トレーニング中に見られる分散内シナリオや、新しい分散外シナリオなど、さまざまな条件をまたいで一般化する能力が必要である。
本研究では,この2つの異なるタイプの一般化を一つのアーキテクチャ内で統一する深層強化学習における動的一般化の枠組みを提案する。
本稿では,分布内および分布外環境のダイナミクスを識別および反応する機構を提供するロバスト適応モジュールと,分布内適応と分布外ロバストネスの目標を組み合わせたジョイントトレーニングパイプラインを導入する。
我々のアルゴリズムであるGRAMは,四足歩行ロボットを用いた様々な現実的なロコモーションタスクにおいて,展開時の分布内および分布外シナリオにまたがる強力な一般化性能を実現する。
関連論文リスト
- Enabling Adaptive Agent Training in Open-Ended Simulators by Targeting Diversity [10.402855891273346]
DIVAは複雑なオープンエンドシミュレータで多様なトレーニングタスクを生成するための進化的アプローチである。
実験の結果,DIVAの複雑なパラメータ化を克服し,適応剤の挙動を訓練するユニークな能力を示す。
論文 参考訳(メタデータ) (2024-11-07T06:27:12Z) - Towards Generalizable Reinforcement Learning via Causality-Guided Self-Adaptive Representations [22.6449779859417]
汎用インテリジェンスには、タスク間の迅速な適応が必要です。
本稿では,分布だけでなく,環境空間も変化するシナリオを幅広く検討する。
我々はCSRと呼ばれる因果性誘導型自己適応表現に基づく手法を導入し、エージェントを効果的に一般化させる。
論文 参考訳(メタデータ) (2024-07-30T08:48:49Z) - Distribution-Dependent Rates for Multi-Distribution Learning [26.38831409926518]
最近のマルチディストリビューション学習フレームワークは、環境との動的相互作用において、この目的に対処する。
我々は, MDL体制における分布依存性の保証を行い, 最適値以下の差でスケールし, その結果, 試料サイズへの依存度が向上することを示した。
適応型楽観的アルゴリズム LCB-DR を考案し,マルチアームバンディット文学における均一性と楽観的アロケーションのコントラストを反映した。
論文 参考訳(メタデータ) (2023-12-20T15:50:16Z) - Distributionally Adaptive Meta Reinforcement Learning [85.17284589483536]
テスト時間分布シフトの下で適切に振る舞うメタRLアルゴリズムのフレームワークを開発する。
我々の枠組みは、分布のロバスト性に対する適応的なアプローチを中心とし、様々なレベルの分布シフトに対してロバストであるようメタポリスの人口を訓練する。
本研究は, 分散シフト下での後悔を改善するための枠組みを示し, シミュレーションロボティクス問題に対する効果を実証的に示す。
論文 参考訳(メタデータ) (2022-10-06T17:55:09Z) - Global-Local Regularization Via Distributional Robustness [26.983769514262736]
ディープニューラルネットワークは、しばしば敵の例や分布シフトに弱い。
最近のアプローチでは、分散ロバストネス最適化(DRO)を利用して、最も難しい分布を見つける。
本稿では,Wasserstein をベースとした DRO フレームワークの後継として,新たな正規化手法を提案する。
論文 参考訳(メタデータ) (2022-03-01T15:36:12Z) - Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning [137.39196753245105]
本稿では,動的一般化のためのマルチヘッドダイナミックスモデルを学習するモデルベース強化学習アルゴリズムを提案する。
文脈学習は,過去の経験から得られる動的情報からコンテキスト潜在ベクトルにエンコードする。
提案手法は,最先端のRL法と比較して,様々な制御タスクにおいて優れたゼロショット一般化性能を示す。
論文 参考訳(メタデータ) (2020-10-26T03:20:42Z) - Context-aware Dynamics Model for Generalization in Model-Based
Reinforcement Learning [124.9856253431878]
グローバルなダイナミクスモデルを学習するタスクを,(a)ローカルなダイナミクスをキャプチャするコンテキスト潜在ベクトルを学習し,(b)次に条件付き状態を予測するという2つの段階に分割する。
本研究では,コンテキスト潜在ベクトルに動的情報をエンコードするために,コンテキスト潜在ベクトルを前方と後方の両方のダイナミクスを予測するのに役立つような新しい損失関数を導入する。
提案手法は,既存のRL方式と比較して,様々なシミュレーションロボットや制御タスクの一般化能力に優れる。
論文 参考訳(メタデータ) (2020-05-14T08:10:54Z) - From Simulation to Real World Maneuver Execution using Deep
Reinforcement Learning [69.23334811890919]
深層強化学習(Deep Reinforcement Learning)は、さまざまな分野における多くの制御タスクを解決できることが証明されている。
これは主に、シミュレーションデータと実世界のデータ間のドメイン適応の欠如と、トレインデータセットとテストデータセットの区別の欠如による。
本稿では,エージェントが同時に訓練される複数の環境に基づくシステムを提案する。
論文 参考訳(メタデータ) (2020-05-13T14:22:20Z) - Invariant Causal Prediction for Block MDPs [106.63346115341862]
環境全体にわたる一般化は、実世界の課題への強化学習アルゴリズムの適用の成功に不可欠である。
本稿では,多環境環境における新しい観測を一般化するモデル不適合状態抽象化(MISA)を学習するための不変予測法を提案する。
論文 参考訳(メタデータ) (2020-03-12T21:03:01Z) - Target-Embedding Autoencoders for Supervised Representation Learning [111.07204912245841]
本稿では,対象空間が高次元な純粋教師付き環境における一般化の枠組みを解析する。
我々は、教師付き予測のための目標埋め込みオートエンコーダ(TEA)の一般的なフレームワークのモチベーションと形式化を行い、特徴とターゲットの予測の両方から予測可能なように最適化された中間潜在表現を学習する。
論文 参考訳(メタデータ) (2020-01-23T02:37:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。