Multi-Scale Node Embeddings for Graph Modeling and Generation
- URL: http://arxiv.org/abs/2412.04354v1
- Date: Thu, 05 Dec 2024 17:12:45 GMT
- Title: Multi-Scale Node Embeddings for Graph Modeling and Generation
- Authors: Riccardo Milocco, Fabian Jansen, Diego Garlaschelli,
- Abstract summary: node embedding algorithms take a graph as input and encode its structure onto output vectors that represent nodes in a geometric space.
Two apparently unrelated limitations affect these algorithms.
We define a multiscale node embedding method that ensures statistical consistency of the embedding vector of a block-node with the sum of the embedding vectors of its constituent nodes.
- Score: 0.0
- License:
- Abstract: Lying at the interface between Network Science and Machine Learning, node embedding algorithms take a graph as input and encode its structure onto output vectors that represent nodes in an abstract geometric space, enabling various vector-based downstream tasks such as network modelling, data compression, link prediction, and community detection. Two apparently unrelated limitations affect these algorithms. On one hand, it is not clear what the basic operation defining vector spaces, i.e. the vector sum, corresponds to in terms of the original nodes in the network. On the other hand, while the same input network can be represented at multiple levels of resolution by coarse-graining the constituent nodes into arbitrary block-nodes, the relationship between node embeddings obtained at different hierarchical levels is not understood. Here, building on recent results in network renormalization theory, we address these two limitations at once and define a multiscale node embedding method that, upon arbitrary coarse-grainings, ensures statistical consistency of the embedding vector of a block-node with the sum of the embedding vectors of its constituent nodes. We illustrate the power of this approach on two economic networks that can be naturally represented at multiple resolution levels: namely, the international trade between (sets of) countries and the input-output flows among (sets of) industries in the Netherlands. We confirm the statistical consistency between networks retrieved from coarse-grained node vectors and networks retrieved from sums of fine-grained node vectors, a result that cannot be achieved by alternative methods. Several key network properties, including a large number of triangles, are successfully replicated already from embeddings of very low dimensionality, allowing for the generation of faithful replicas of the original networks at arbitrary resolution levels.
Related papers
- Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
We modify the Graph Neural Network (GNN) architecture so that the weight matrices are learned, separately, for the nodes in each group.
This simple-to-implement modification seems to improve performance across datasets and GNN methods.
arXiv Detail & Related papers (2023-12-16T14:09:23Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Refined Edge Usage of Graph Neural Networks for Edge Prediction [51.06557652109059]
We propose a novel edge prediction paradigm named Edge-aware Message PassIng neuRal nEtworks (EMPIRE)
We first introduce an edge splitting technique to specify use of each edge where each edge is solely used as either the topology or the supervision.
In order to emphasize the differences between pairs connected by supervision edges and pairs unconnected, we further weight the messages to highlight the relative ones that can reflect the differences.
arXiv Detail & Related papers (2022-12-25T23:19:56Z) - The Influence of Network Structural Preference on Node Classification
and Link Prediction [0.0]
This work introduces a new feature abstraction method, namely the Transition Probabilities Matrix (TPM)
The success of the proposed embedding method is tested on node identification/classification and link prediction on three commonly used real-world networks.
arXiv Detail & Related papers (2022-08-07T12:56:28Z) - Learning Asymmetric Embedding for Attributed Networks via Convolutional
Neural Network [19.611523749659355]
We propose a novel deep asymmetric attributed network embedding model based on convolutional graph neural network, called AAGCN.
The main idea is to maximally preserve the asymmetric proximity and asymmetric similarity of directed attributed networks.
We test the performance of AAGCN on three real-world networks for network reconstruction, link prediction, node classification and visualization tasks.
arXiv Detail & Related papers (2022-02-13T13:35:15Z) - VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using
Vector Quantization [70.8567058758375]
VQ-GNN is a universal framework to scale up any convolution-based GNNs using Vector Quantization (VQ) without compromising the performance.
Our framework avoids the "neighbor explosion" problem of GNNs using quantized representations combined with a low-rank version of the graph convolution matrix.
arXiv Detail & Related papers (2021-10-27T11:48:50Z) - Neural Network Modeling of Probabilities for Coding the Octree
Representation of Point Clouds [0.0]
This paper describes a novel point cloud compression algorithm that uses a neural network for estimating the coding probabilities for the occupancy status of voxels.
The proposed algorithms yield state-of-the-art results on benchmark datasets.
arXiv Detail & Related papers (2021-06-11T16:07:46Z) - Multiplex Bipartite Network Embedding using Dual Hypergraph
Convolutional Networks [16.62391694987056]
We develop an unsupervised Dual HyperGraph Convolutional Network (DualHGCN) model scalably transforms the multiplex bipartite network into two sets of homogeneous hypergraphs.
We benchmark DualHGCN using four real-world datasets on link prediction and node classification tasks.
arXiv Detail & Related papers (2021-02-12T07:20:36Z) - Towards Efficient Scene Understanding via Squeeze Reasoning [71.1139549949694]
We propose a novel framework called Squeeze Reasoning.
Instead of propagating information on the spatial map, we first learn to squeeze the input feature into a channel-wise global vector.
We show that our approach can be modularized as an end-to-end trained block and can be easily plugged into existing networks.
arXiv Detail & Related papers (2020-11-06T12:17:01Z) - Unsupervised Differentiable Multi-aspect Network Embedding [52.981277420394846]
We propose a novel end-to-end framework for multi-aspect network embedding, called asp2vec.
Our proposed framework can be readily extended to heterogeneous networks.
arXiv Detail & Related papers (2020-06-07T19:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.