The Influence of Network Structural Preference on Node Classification
and Link Prediction
- URL: http://arxiv.org/abs/2208.03712v2
- Date: Tue, 9 Aug 2022 08:34:59 GMT
- Title: The Influence of Network Structural Preference on Node Classification
and Link Prediction
- Authors: Sarmad N. Mohammed and Semra G\"und\"u\c{c}
- Abstract summary: This work introduces a new feature abstraction method, namely the Transition Probabilities Matrix (TPM)
The success of the proposed embedding method is tested on node identification/classification and link prediction on three commonly used real-world networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in complex network analysis opened a wide range of
possibilities for applications in diverse fields. The power of the network
analysis depends on the node features. The topology-based node features are
realizations of local and global spatial relations and node connectivity
structure. Hence, collecting correct information on the node characteristics
and the connectivity structure of the neighboring nodes plays the most
prominent role in node classification and link prediction in complex network
analysis. The present work introduces a new feature abstraction method, namely
the Transition Probabilities Matrix (TPM), based on embedding anonymous random
walks on feature vectors. The node feature vectors consist of transition
probabilities obtained from sets of walks in a predefined radius. The
transition probabilities are directly related to the local connectivity
structure, hence correctly embedded onto feature vectors. The success of the
proposed embedding method is tested on node identification/classification and
link prediction on three commonly used real-world networks. In real-world
networks, nodes with similar connectivity structures are common; Thus,
obtaining information from similar networks for predictions on the new networks
is the distinguishing characteristic that makes the proposed algorithm superior
to the state-of-the-art algorithms in terms of cross-networks generalization
tasks.
Related papers
- Exact Recovery and Bregman Hard Clustering of Node-Attributed Stochastic
Block Model [0.16385815610837165]
This paper presents an information-theoretic criterion for the exact recovery of community labels.
It shows how network and attribute information can be exchanged in order to have exact recovery.
It also presents an iterative clustering algorithm that maximizes the joint likelihood.
arXiv Detail & Related papers (2023-10-30T16:46:05Z) - Collaborative Graph Neural Networks for Attributed Network Embedding [63.39495932900291]
Graph neural networks (GNNs) have shown prominent performance on attributed network embedding.
We propose COllaborative graph Neural Networks--CONN, a tailored GNN architecture for network embedding.
arXiv Detail & Related papers (2023-07-22T04:52:27Z) - Learning Asymmetric Embedding for Attributed Networks via Convolutional
Neural Network [19.611523749659355]
We propose a novel deep asymmetric attributed network embedding model based on convolutional graph neural network, called AAGCN.
The main idea is to maximally preserve the asymmetric proximity and asymmetric similarity of directed attributed networks.
We test the performance of AAGCN on three real-world networks for network reconstruction, link prediction, node classification and visualization tasks.
arXiv Detail & Related papers (2022-02-13T13:35:15Z) - Link Prediction with Contextualized Self-Supervision [63.25455976593081]
Link prediction aims to infer the existence of a link between two nodes in a network.
Traditional link prediction algorithms are hindered by three major challenges -- link sparsity, node attribute noise and network dynamics.
We propose a Contextualized Self-Supervised Learning framework that fully exploits structural context prediction for link prediction.
arXiv Detail & Related papers (2022-01-25T03:12:32Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
We study how local structural network properties can be used as proxies to improve the efficiency of hierarchical community detection.
We also check the performance impact of network prunings as an ancillary tactic to make hierarchical community detection more efficient.
arXiv Detail & Related papers (2020-09-15T00:16:12Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - DINE: A Framework for Deep Incomplete Network Embedding [33.97952453310253]
We propose a Deep Incomplete Network Embedding method, namely DINE.
We first complete the missing part including both nodes and edges in a partially observable network by using the expectation-maximization framework.
We evaluate DINE over three networks on multi-label classification and link prediction tasks.
arXiv Detail & Related papers (2020-08-09T04:59:35Z) - Graph Prototypical Networks for Few-shot Learning on Attributed Networks [72.31180045017835]
We propose a graph meta-learning framework -- Graph Prototypical Networks (GPN)
GPN is able to perform textitmeta-learning on an attributed network and derive a highly generalizable model for handling the target classification task.
arXiv Detail & Related papers (2020-06-23T04:13:23Z) - Adversarial Deep Network Embedding for Cross-network Node Classification [27.777464531860325]
Cross-network node classification leverages the abundant labeled nodes from a source network to help classify unlabeled nodes in a target network.
In this paper, we propose an adversarial cross-network deep network embedding model to integrate adversarial domain adaptation with deep network embedding.
The proposed ACDNE model achieves the state-of-the-art performance in cross-network node classification.
arXiv Detail & Related papers (2020-02-18T04:30:43Z) - Investigating the Compositional Structure Of Deep Neural Networks [1.8899300124593645]
We introduce a novel theoretical framework based on the compositional structure of piecewise linear activation functions.
It is possible to characterize the instances of the input data with respect to both the predicted label and the specific (linear) transformation used to perform predictions.
Preliminary tests on the MNIST dataset show that our method can group input instances with regard to their similarity in the internal representation of the neural network.
arXiv Detail & Related papers (2020-02-17T14:16:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.