論文の概要: Artificial intelligence and the internal processes of creativity
- arxiv url: http://arxiv.org/abs/2412.04366v2
- Date: Fri, 06 Dec 2024 17:31:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 12:36:39.180700
- Title: Artificial intelligence and the internal processes of creativity
- Title(参考訳): 人工知能と創造性の内部過程
- Authors: Jaan Aru,
- Abstract要約: 本稿では,創造性の内部過程の基盤となる神経生物学的機構について考察する。
人工と人間の創造性の産物は似ているが、内部プロセスは異なると結論付けている。
この論文は、AIが人間の創造性の内部プロセス、例えばスキルの発展、知識の統合、アイデアの多様性にどのように悪影響を及ぼすかについても論じている。
- 参考スコア(独自算出の注目度): 1.3597551064547502
- License:
- Abstract: Artificial intelligence (AI) systems capable of generating creative outputs are reshaping our understanding of creativity. This shift presents an opportunity for creativity researchers to reevaluate the key components of the creative process. In particular, the advanced capabilities of AI underscore the importance of studying the internal processes of creativity. This paper explores the neurobiological machinery that underlies these internal processes and describes the experiential component of creativity. It is concluded that although the products of artificial and human creativity can be similar, the internal processes are different. The paper also discusses how AI may negatively affect the internal processes of human creativity, such as the development of skills, the integration of knowledge, and the diversity of ideas.
- Abstract(参考訳): 創造的なアウトプットを生成する人工知能(AI)システムは、創造性に対する理解を変えつつある。
この変化はクリエイティビティ研究者にとって、創造的プロセスの重要な構成要素を再評価する機会となる。
特に、AIの高度な能力は、創造性の内部プロセスを研究することの重要性を強調している。
本稿では,これらの内部プロセスの基盤となる神経生物学的機構について考察し,創造性に関する経験的要素について述べる。
人工と人間の創造性の産物は似ているが、内部プロセスは異なると結論付けている。
この論文は、AIが人間の創造性の内部プロセス、例えばスキルの発展、知識の統合、アイデアの多様性にどのように悪影響を及ぼすかについても論じている。
関連論文リスト
- Initial Development and Evaluation of the Creative Artificial Intelligence through Recurring Developments and Determinations (CAIRDD) System [0.0]
大型言語モデル (LLMs) は創造性と感覚の出現のファクシミリを提供するが、実際は創造的でも知覚的でもない。
本稿では,概念注入・精錬の反復的プロセスを通じてLCM出力の創造性を向上する手法を提案する。
論文 参考訳(メタデータ) (2024-09-03T21:04:07Z) - Diffusion-Based Visual Art Creation: A Survey and New Perspectives [51.522935314070416]
本調査は,拡散に基づく視覚芸術創造の新たな領域を探求し,その発展を芸術的,技術的両面から検討する。
本研究は,芸術的要件が技術的課題にどのように変換されるかを明らかにし,視覚芸術創造における拡散法の設計と応用を強調した。
我々は、AIシステムが芸術的知覚と創造性において人間の能力をエミュレートし、潜在的に増強するメカニズムに光を当てることを目指している。
論文 参考訳(メタデータ) (2024-08-22T04:49:50Z) - On the stochastics of human and artificial creativity [0.0]
コンピュータにおける人間レベルの知性を達成するためには、人間レベルの創造性も必要である、と我々は主張する。
我々は、理論、心理学、哲学、神経科学、カオス理論からの事前の洞察を取り入れて、人間の創造性を統計的に表現する。
私たちの分析には、強化学習や拡散モデル、大規模言語モデルといった最新のAIアルゴリズムが含まれています。
論文 参考訳(メタデータ) (2024-03-03T10:38:57Z) - Can AI Be as Creative as Humans? [84.43873277557852]
理論的には、AIは人間の創造者によって生成されたデータに適切に適合できるという条件の下で、人間と同じくらい創造的になれることを証明しています。
AIの創造性に関する議論は、十分な量のデータに適合する能力の問題に縮小されている。
論文 参考訳(メタデータ) (2024-01-03T08:49:12Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - AI and the creative realm: A short review of current and future
applications [2.1320960069210484]
本研究は創造性と人工知能(AI)の概念を探求する。
より洗練されたAIモデルの開発と人間とコンピュータの相互作用ツールの普及により、芸術的創造におけるAIの新たな可能性が高まっている。
論文 参考訳(メタデータ) (2023-06-01T12:28:08Z) - Designing Participatory AI: Creative Professionals' Worries and
Expectations about Generative AI [8.379286663107845]
生成AI(英: Generative AI)とは、テキストのプロンプトに基づいて視覚的または書き起こされたコンテンツを自動生成する一連の技術で、複雑さが飛躍的に増加し、わずか数年で広く利用できるようになる技術である。
本稿では,創造的プロフェッショナルが生成AIをどのように考えるかに関する質的研究の結果を報告する。
論文 参考訳(メタデータ) (2023-03-15T20:57:03Z) - Towards Creativity Characterization of Generative Models via Group-based
Subset Scanning [64.6217849133164]
創造的プロセスを特定し,定量化し,特徴付けるグループベースサブセットスキャンを提案する。
創造的なサンプルは、データセット全体にわたる通常のサンプルや非創造的なサンプルよりも大きな異常のサブセットを生成する。
論文 参考訳(メタデータ) (2022-03-01T15:07:14Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。