SeeGround: See and Ground for Zero-Shot Open-Vocabulary 3D Visual Grounding
- URL: http://arxiv.org/abs/2412.04383v1
- Date: Thu, 05 Dec 2024 17:58:43 GMT
- Title: SeeGround: See and Ground for Zero-Shot Open-Vocabulary 3D Visual Grounding
- Authors: Rong Li, Shijie Li, Lingdong Kong, Xulei Yang, Junwei Liang,
- Abstract summary: 3D Visual Grounding aims to locate objects in 3D scenes based on textual descriptions.<n>We introduce SeeGround, a zero-shot 3DVG framework leveraging 2D Vision-Language Models (VLMs) trained on large-scale 2D data.<n>We propose two modules: the Perspective Adaptation Module, which dynamically selects viewpoints for query-relevant image rendering, and the Fusion Alignment Module, which integrates 2D images with 3D spatial descriptions.
- Score: 10.81711535075112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Visual Grounding (3DVG) aims to locate objects in 3D scenes based on textual descriptions, which is essential for applications like augmented reality and robotics. Traditional 3DVG approaches rely on annotated 3D datasets and predefined object categories, limiting scalability and adaptability. To overcome these limitations, we introduce SeeGround, a zero-shot 3DVG framework leveraging 2D Vision-Language Models (VLMs) trained on large-scale 2D data. We propose to represent 3D scenes as a hybrid of query-aligned rendered images and spatially enriched text descriptions, bridging the gap between 3D data and 2D-VLMs input formats. We propose two modules: the Perspective Adaptation Module, which dynamically selects viewpoints for query-relevant image rendering, and the Fusion Alignment Module, which integrates 2D images with 3D spatial descriptions to enhance object localization. Extensive experiments on ScanRefer and Nr3D demonstrate that our approach outperforms existing zero-shot methods by large margins. Notably, we exceed weakly supervised methods and rival some fully supervised ones, outperforming previous SOTA by 7.7% on ScanRefer and 7.1% on Nr3D, showcasing its effectiveness.
Related papers
- Ross3D: Reconstructive Visual Instruction Tuning with 3D-Awareness [73.72335146374543]
We introduce reconstructive visual instruction tuning with 3D-awareness (Ross3D), which integrates 3D-aware visual supervision into the training procedure.
Ross3D achieves state-of-the-art performance across various 3D scene understanding benchmarks.
arXiv Detail & Related papers (2025-04-02T16:59:55Z) - DINO in the Room: Leveraging 2D Foundation Models for 3D Segmentation [51.43837087865105]
Vision foundation models (VFMs) trained on large-scale image datasets provide high-quality features that have significantly advanced 2D visual recognition.
Their potential in 3D vision remains largely untapped, despite the common availability of 2D images alongside 3D point cloud datasets.
We introduce DITR, a simple yet effective approach that extracts 2D foundation model features, projects them to 3D, and finally injects them into a 3D point cloud segmentation model.
arXiv Detail & Related papers (2025-03-24T17:59:11Z) - Unifying 2D and 3D Vision-Language Understanding [85.84054120018625]
We introduce UniVLG, a unified architecture for 2D and 3D vision-language learning.
UniVLG bridges the gap between existing 2D-centric models and the rich 3D sensory data available in embodied systems.
arXiv Detail & Related papers (2025-03-13T17:56:22Z) - Weakly-Supervised 3D Visual Grounding based on Visual Linguistic Alignment [26.858034573776198]
We propose a weakly supervised approach for 3D visual grounding based on Visual Linguistic Alignment.
Our 3D-VLA exploits the superior ability of current large-scale vision-language models on aligning the semantics between texts and 2D images.
During the inference stage, the learned text-3D correspondence will help us ground the text queries to the 3D target objects even without 2D images.
arXiv Detail & Related papers (2023-12-15T09:08:14Z) - Uni3D: Exploring Unified 3D Representation at Scale [66.26710717073372]
We present Uni3D, a 3D foundation model to explore the unified 3D representation at scale.
Uni3D uses a 2D ViT end-to-end pretrained to align the 3D point cloud features with the image-text aligned features.
We show that the strong Uni3D representation also enables applications such as 3D painting and retrieval in the wild.
arXiv Detail & Related papers (2023-10-10T16:49:21Z) - Cross3DVG: Cross-Dataset 3D Visual Grounding on Different RGB-D Scans [6.936271803454143]
We present a novel task for cross-dataset visual grounding in 3D scenes (Cross3DVG)
We created RIORefer, a large-scale 3D visual grounding dataset.
It includes more than 63k diverse descriptions of 3D objects within 1,380 indoor RGB-D scans from 3RScan.
arXiv Detail & Related papers (2023-05-23T09:52:49Z) - Generating Visual Spatial Description via Holistic 3D Scene
Understanding [88.99773815159345]
Visual spatial description (VSD) aims to generate texts that describe the spatial relations of the given objects within images.
With an external 3D scene extractor, we obtain the 3D objects and scene features for input images.
We construct a target object-centered 3D spatial scene graph (Go3D-S2G), such that we model the spatial semantics of target objects within the holistic 3D scenes.
arXiv Detail & Related papers (2023-05-19T15:53:56Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
arXiv Detail & Related papers (2021-04-06T02:22:24Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
State-of-the-art methods for large-scale driving-scene LiDAR semantic segmentation often project and process the point clouds in the 2D space.
A straightforward solution to tackle the issue of 3D-to-2D projection is to keep the 3D representation and process the points in the 3D space.
We develop a 3D cylinder partition and a 3D cylinder convolution based framework, termed as Cylinder3D, which exploits the 3D topology relations and structures of driving-scene point clouds.
arXiv Detail & Related papers (2020-08-04T13:56:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.