論文の概要: Establishing Task Scaling Laws via Compute-Efficient Model Ladders
- arxiv url: http://arxiv.org/abs/2412.04403v1
- Date: Thu, 05 Dec 2024 18:21:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:42:33.479661
- Title: Establishing Task Scaling Laws via Compute-Efficient Model Ladders
- Title(参考訳): 計算効率の良いモデルラダーによるタスクスケーリング法則の確立
- Authors: Akshita Bhagia, Jiacheng Liu, Alexander Wettig, David Heineman, Oyvind Tafjord, Ananya Harsh Jha, Luca Soldaini, Noah A. Smith, Dirk Groeneveld, Pang Wei Koh, Jesse Dodge, Hannaneh Hajishirzi,
- Abstract要約: 我々は,事前訓練された言語モデル(LM)のタスク性能を予測するために,タスクスケーリング法則とモデルはしごを開発する。
まず、タスク固有の損失を予測するためにモデルとデータサイズを使用し、次にタスクの損失を使ってタスクパフォーマンスを予測する。
- 参考スコア(独自算出の注目度): 123.8193940110293
- License:
- Abstract: We develop task scaling laws and model ladders to predict the individual task performance of pretrained language models (LMs) in the overtrained setting. Standard power laws for language modeling loss cannot accurately model task performance. Therefore, we leverage a two-step prediction approach: first use model and data size to predict a task-specific loss, and then use this task loss to predict task performance. We train a set of small-scale "ladder" models, collect data points to fit the parameterized functions of the two prediction steps, and make predictions for two target models: a 7B model trained to 4T tokens and a 13B model trained to 5T tokens. Training the ladder models only costs 1% of the compute used for the target models. On four multiple-choice tasks written in ranked classification format, we can predict the accuracy of both target models within 2 points of absolute error. We have higher prediction error on four other tasks (average absolute error 6.9) and find that these are often tasks with higher variance in task metrics. We also find that using less compute to train fewer ladder models tends to deteriorate predictions. Finally, we empirically show that our design choices and the two-step approach lead to superior performance in establishing scaling laws.
- Abstract(参考訳): 我々は,事前訓練された言語モデル(LM)のタスク性能を予測するために,タスクスケーリング法則とモデルはしごを開発する。
言語モデリング損失の標準電力法則は、タスク性能を正確にモデル化することはできない。
そこで、まずモデルとデータサイズを用いてタスク固有の損失を予測し、次にタスクの損失をタスクのパフォーマンスを予測する。
2つの予測ステップのパラメータ化関数に適合するデータポイントを収集し、4Tトークンにトレーニングされた7Bモデルと、5Tトークンにトレーニングされた13Bモデルという2つのターゲットモデルに対して予測を行う。
はしごモデルのトレーニングには、対象モデルで使用される計算の1%しかかからない。
ランク付けされた分類形式で記述された4つの多重選択タスクにおいて、絶対誤差の2点以内で両方の対象モデルの精度を予測することができる。
他の4つのタスク(平均絶対誤差6.9)に対して高い予測誤差があり、これらのタスクはタスクメトリクスのばらつきが高いタスクであることが多い。
また、少ない計算ではしごモデルをトレーニングすると、予測が劣化する傾向があることもわかりました。
最後に、我々の設計選択と2段階のアプローチがスケーリング法則の確立に優れたパフォーマンスをもたらすことを実証的に示します。
関連論文リスト
- Scaling Laws for Precision [73.24325358259753]
トレーニングと推論の両方に"精度対応"のスケーリング法則を考案する。
推論では,学習後の量子化によって生じる劣化が,モデルがより多くのデータに基づいて訓練されるにつれて増加することが分かる。
トレーニングのために、我々のスケーリング法則は、異なるパーツの異なるモデルの損失を、異なる精度で予測することができる。
論文 参考訳(メタデータ) (2024-11-07T00:10:10Z) - A Hitchhiker's Guide to Scaling Law Estimation [56.06982415792523]
スケーリング法則は、より少ないパラメータやより少ないトレーニングセットで訓練が容易なモデルから外挿することで、ターゲットとなる機械学習モデルの損失を予測する。
我々は1000以上のスケーリング法則を推定し、新しいモデルファミリーにおけるスケーリング法則を推定するためのベストプラクティスを導出する。
論文 参考訳(メタデータ) (2024-10-15T17:59:10Z) - Language models scale reliably with over-training and on downstream tasks [121.69867718185125]
スケーリング法則は、高価なトレーニング実行を引き出すための有用なガイドである。
しかし、現在の研究と言語モデルがどのように訓練されているかには差がある。
対照的に、スケーリング法則は主に推論における損失を予測するが、モデルは通常下流のタスクのパフォーマンスで比較される。
論文 参考訳(メタデータ) (2024-03-13T13:54:00Z) - TaskMet: Task-Driven Metric Learning for Model Learning [29.0053868393653]
ディープラーニングモデルは、トレーニング手順が認識していない可能性のある下流タスクにデプロイされることが多い。
本稿では,モデルのパラメータよりも1段階深いタスク損失信号を用いて,モデルがトレーニングした損失関数のパラメータを学習する。
このアプローチは、最適な予測モデル自体を変更するのではなく、下流のタスクにとって重要な情報を強調するためにモデル学習を変更する。
論文 参考訳(メタデータ) (2023-12-08T18:59:03Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
本稿では,大規模な微分モデルに対して有効かつ計算的に抽出可能なデータ属性法であるTRAK(Tracing with Randomly-trained After Kernel)を提案する。
論文 参考訳(メタデータ) (2023-03-24T17:56:22Z) - Task-Specific Skill Localization in Fine-tuned Language Models [36.53572616441048]
本稿では,この問題に対するスキルローカライゼーションという用語を紹介する。
単純な最適化は、非常に小さなパラメータのサブセットを特定するために使われる。
この小さなサブセットの微調整された値を事前訓練されたモデルに移植することで、微調整されたモデルとほぼ同等のパフォーマンスが得られる。
論文 参考訳(メタデータ) (2023-02-13T18:55:52Z) - Training Trajectories of Language Models Across Scales [99.38721327771208]
言語モデルのスケールアップは、前例のないパフォーマンス向上につながった。
異なるサイズの言語モデルは事前学習中にどのように学習するか?
より大きな言語モデルはなぜ望ましい振る舞いを示すのか?
論文 参考訳(メタデータ) (2022-12-19T19:16:29Z) - Scaling Laws for Acoustic Models [7.906034575114518]
近年の研究では、クロスエントロピー目的関数を持つ自己回帰生成モデルがスムーズなパワー-ロー関係を示すことが示されている。
自動予測符号損失で訓練された音響モデルは、まるで同様のスケーリング法則に従うかのように振る舞うことを示す。
論文 参考訳(メタデータ) (2021-06-11T18:59:24Z) - Meta-Regularization by Enforcing Mutual-Exclusiveness [0.8057006406834467]
本稿では,メタ学習時の情報フローをモデル設計者が制御できるように,メタ学習モデルの正規化手法を提案する。
提案した正規化関数は,Omniglotデータセット上で$sim$$36%の精度向上を示す。
論文 参考訳(メタデータ) (2021-01-24T22:57:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。