Four-Plane Factorized Video Autoencoders
- URL: http://arxiv.org/abs/2412.04452v1
- Date: Thu, 05 Dec 2024 18:58:17 GMT
- Title: Four-Plane Factorized Video Autoencoders
- Authors: Mohammed Suhail, Carlos Esteves, Leonid Sigal, Ameesh Makadia,
- Abstract summary: We propose an autoencoder that projects data onto a four-plane factorized latent space that grows sublinearly with the input size.
Our results show that the proposed four-plane latent space retains a rich representation needed for high-fidelity reconstructions.
- Score: 44.00676320678128
- License:
- Abstract: Latent variable generative models have emerged as powerful tools for generative tasks including image and video synthesis. These models are enabled by pretrained autoencoders that map high resolution data into a compressed lower dimensional latent space, where the generative models can subsequently be developed while requiring fewer computational resources. Despite their effectiveness, the direct application of latent variable models to higher dimensional domains such as videos continues to pose challenges for efficient training and inference. In this paper, we propose an autoencoder that projects volumetric data onto a four-plane factorized latent space that grows sublinearly with the input size, making it ideal for higher dimensional data like videos. The design of our factorized model supports straightforward adoption in a number of conditional generation tasks with latent diffusion models (LDMs), such as class-conditional generation, frame prediction, and video interpolation. Our results show that the proposed four-plane latent space retains a rich representation needed for high-fidelity reconstructions despite the heavy compression, while simultaneously enabling LDMs to operate with significant improvements in speed and memory.
Related papers
- Pushing the Boundaries of State Space Models for Image and Video Generation [26.358592737557956]
We build the largest-scale diffusion SSM-Transformer hybrid model to date (5B parameters) based on the sub-quadratic bi-directional Hydra and self-attention.
Our results demonstrate that the model can produce faithful results aligned with complex text prompts and temporal consistent videos with high dynamics.
arXiv Detail & Related papers (2025-02-03T00:51:09Z) - Exploring Representation-Aligned Latent Space for Better Generation [86.45670422239317]
We introduce ReaLS, which integrates semantic priors to improve generation performance.
We show that fundamental DiT and SiT trained on ReaLS can achieve a 15% improvement in FID metric.
The enhanced semantic latent space enables more perceptual downstream tasks, such as segmentation and depth estimation.
arXiv Detail & Related papers (2025-02-01T07:42:12Z) - ARLON: Boosting Diffusion Transformers with Autoregressive Models for Long Video Generation [83.62931466231898]
This paper presents ARLON, a framework that boosts diffusion Transformers with autoregressive models for long video generation.
A latent Vector Quantized Variational Autoencoder (VQ-VAE) compresses the input latent space of the DiT model into compact visual tokens.
An adaptive norm-based semantic injection module integrates the coarse discrete visual units from the AR model into the DiT model.
arXiv Detail & Related papers (2024-10-27T16:28:28Z) - MotionAura: Generating High-Quality and Motion Consistent Videos using Discrete Diffusion [3.7270979204213446]
We present four key contributions to address the challenges of video processing.
First, we introduce the 3D Inverted Vector-Quantization Variencoenco Autocoder.
Second, we present MotionAura, a text-to-video generation framework.
Third, we propose a spectral transformer-based denoising network.
Fourth, we introduce a downstream task of Sketch Guided Videopainting.
arXiv Detail & Related papers (2024-10-10T07:07:56Z) - RAVEN: Rethinking Adversarial Video Generation with Efficient Tri-plane Networks [93.18404922542702]
We present a novel video generative model designed to address long-term spatial and temporal dependencies.
Our approach incorporates a hybrid explicit-implicit tri-plane representation inspired by 3D-aware generative frameworks.
Our model synthesizes high-fidelity video clips at a resolution of $256times256$ pixels, with durations extending to more than $5$ seconds at a frame rate of 30 fps.
arXiv Detail & Related papers (2024-01-11T16:48:44Z) - Video Probabilistic Diffusion Models in Projected Latent Space [75.4253202574722]
We propose a novel generative model for videos, coined projected latent video diffusion models (PVDM)
PVDM learns a video distribution in a low-dimensional latent space and thus can be efficiently trained with high-resolution videos under limited resources.
arXiv Detail & Related papers (2023-02-15T14:22:34Z) - Greedy Hierarchical Variational Autoencoders for Large-Scale Video
Prediction [79.23730812282093]
We introduce Greedy Hierarchical Variational Autoencoders (GHVAEs), a method that learns high-fidelity video predictions by greedily training each level of a hierarchical autoencoder.
GHVAEs provide 17-55% gains in prediction performance on four video datasets, a 35-40% higher success rate on real robot tasks, and can improve performance monotonically by simply adding more modules.
arXiv Detail & Related papers (2021-03-06T18:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.