Exploring Representation-Aligned Latent Space for Better Generation
- URL: http://arxiv.org/abs/2502.00359v1
- Date: Sat, 01 Feb 2025 07:42:12 GMT
- Title: Exploring Representation-Aligned Latent Space for Better Generation
- Authors: Wanghan Xu, Xiaoyu Yue, Zidong Wang, Yao Teng, Wenlong Zhang, Xihui Liu, Luping Zhou, Wanli Ouyang, Lei Bai,
- Abstract summary: We introduce ReaLS, which integrates semantic priors to improve generation performance.
We show that fundamental DiT and SiT trained on ReaLS can achieve a 15% improvement in FID metric.
The enhanced semantic latent space enables more perceptual downstream tasks, such as segmentation and depth estimation.
- Score: 86.45670422239317
- License:
- Abstract: Generative models serve as powerful tools for modeling the real world, with mainstream diffusion models, particularly those based on the latent diffusion model paradigm, achieving remarkable progress across various tasks, such as image and video synthesis. Latent diffusion models are typically trained using Variational Autoencoders (VAEs), interacting with VAE latents rather than the real samples. While this generative paradigm speeds up training and inference, the quality of the generated outputs is limited by the latents' quality. Traditional VAE latents are often seen as spatial compression in pixel space and lack explicit semantic representations, which are essential for modeling the real world. In this paper, we introduce ReaLS (Representation-Aligned Latent Space), which integrates semantic priors to improve generation performance. Extensive experiments show that fundamental DiT and SiT trained on ReaLS can achieve a 15% improvement in FID metric. Furthermore, the enhanced semantic latent space enables more perceptual downstream tasks, such as segmentation and depth estimation.
Related papers
- Masked Autoencoders Are Effective Tokenizers for Diffusion Models [56.08109308294133]
MAETok is an autoencoder that learns semantically rich latent space while maintaining reconstruction fidelity.
MaETok achieves significant practical improvements, enabling a gFID of 1.69 with 76x faster training and 31x higher inference throughput for 512x512 generation.
arXiv Detail & Related papers (2025-02-05T18:42:04Z) - Visual Autoregressive Modeling for Image Super-Resolution [14.935662351654601]
We propose a novel visual autoregressive modeling for ISR framework with the form of next-scale prediction.
We collect large-scale data and design a training process to obtain robust generative priors.
arXiv Detail & Related papers (2025-01-31T09:53:47Z) - Reconstruction vs. Generation: Taming Optimization Dilemma in Latent Diffusion Models [34.15905637499148]
We propose aligning the latent space with pre-trained vision foundation models when training the visual tokenizers.
Our proposed VA-VAE significantly expands the reconstruction-generation frontier of latent diffusion models.
We build an enhanced DiT baseline with improved training strategies and architecture designs, termed LightningDiT.
arXiv Detail & Related papers (2025-01-02T18:59:40Z) - Multimodal Latent Language Modeling with Next-Token Diffusion [111.93906046452125]
Multimodal generative models require a unified approach to handle both discrete data (e.g., text and code) and continuous data (e.g., image, audio, video)
We propose Latent Language Modeling (LatentLM), which seamlessly integrates continuous and discrete data using causal Transformers.
arXiv Detail & Related papers (2024-12-11T18:57:32Z) - ARLON: Boosting Diffusion Transformers with Autoregressive Models for Long Video Generation [83.62931466231898]
This paper presents ARLON, a framework that boosts diffusion Transformers with autoregressive models for long video generation.
A latent Vector Quantized Variational Autoencoder (VQ-VAE) compresses the input latent space of the DiT model into compact visual tokens.
An adaptive norm-based semantic injection module integrates the coarse discrete visual units from the AR model into the DiT model.
arXiv Detail & Related papers (2024-10-27T16:28:28Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World
Video Super-Resolution [65.91317390645163]
Upscale-A-Video is a text-guided latent diffusion framework for video upscaling.
It ensures temporal coherence through two key mechanisms: locally, it integrates temporal layers into U-Net and VAE-Decoder, maintaining consistency within short sequences.
It also offers greater flexibility by allowing text prompts to guide texture creation and adjustable noise levels to balance restoration and generation.
arXiv Detail & Related papers (2023-12-11T18:54:52Z) - Variational latent discrete representation for time series modelling [0.0]
We introduce a latent data model where the discrete state is a Markov chain, which allows fast end-to-end training.
The performance of our generative model is assessed on a building management dataset and on the publicly available Electricity Transformer dataset.
arXiv Detail & Related papers (2023-06-27T08:15:05Z) - DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from
Low-Dimensional Latents [26.17940552906923]
We present DiffuseVAE, a novel generative framework that integrates VAE within a diffusion model framework.
We show that the proposed model can generate high-resolution samples and exhibits quality comparable to state-of-the-art models on standard benchmarks.
arXiv Detail & Related papers (2022-01-02T06:44:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.