UnZipLoRA: Separating Content and Style from a Single Image
- URL: http://arxiv.org/abs/2412.04465v1
- Date: Thu, 05 Dec 2024 18:59:50 GMT
- Title: UnZipLoRA: Separating Content and Style from a Single Image
- Authors: Chang Liu, Viraj Shah, Aiyu Cui, Svetlana Lazebnik,
- Abstract summary: UnZipLoRA is a method for decomposing an image into its constituent subject and style.
UnZipLoRA disentangles these elements from a single image by training both the LoRAs simultaneously.
- Score: 16.61595725708187
- License:
- Abstract: This paper introduces UnZipLoRA, a method for decomposing an image into its constituent subject and style, represented as two distinct LoRAs (Low-Rank Adaptations). Unlike existing personalization techniques that focus on either subject or style in isolation, or require separate training sets for each, UnZipLoRA disentangles these elements from a single image by training both the LoRAs simultaneously. UnZipLoRA ensures that the resulting LoRAs are compatible, i.e., they can be seamlessly combined using direct addition. UnZipLoRA enables independent manipulation and recontextualization of subject and style, including generating variations of each, applying the extracted style to new subjects, and recombining them to reconstruct the original image or create novel variations. To address the challenge of subject and style entanglement, UnZipLoRA employs a novel prompt separation technique, as well as column and block separation strategies to accurately preserve the characteristics of subject and style, and ensure compatibility between the learned LoRAs. Evaluation with human studies and quantitative metrics demonstrates UnZipLoRA's effectiveness compared to other state-of-the-art methods, including DreamBooth-LoRA, Inspiration Tree, and B-LoRA.
Related papers
- Cached Multi-Lora Composition for Multi-Concept Image Generation [10.433033595844442]
Low-Rank Adaptation (LoRA) has emerged as a widely adopted technique in text-to-image models.
Current approaches face significant challenges when composing these LoRAs for multi-concept image generation.
We introduce a novel, training-free framework, Cached Multi-LoRA (CMLoRA), designed to efficiently integrate multiple LoRAs.
arXiv Detail & Related papers (2025-02-07T13:41:51Z) - Each Rank Could be an Expert: Single-Ranked Mixture of Experts LoRA for Multi-Task Learning [53.98941571078398]
Low-Rank Adaptation (LoRA) is widely used for adapting large language models (LLMs) to specific domains due to its efficiency and modularity.
Recent works adopt Mixture of Experts (MoE) by treating each LoRA module as an expert, thereby mitigating task interference through multiple specialized LoRA modules.
While effective, these methods often isolate knowledge within individual tasks, failing to fully exploit the shared knowledge across related tasks.
We propose Single-ranked Mixture of Experts LoRA (textbfSMoRA), which embeds MoE into LoRA by textittreating each rank as an
arXiv Detail & Related papers (2025-01-25T06:56:39Z) - A LoRA is Worth a Thousand Pictures [28.928964530616593]
Low Rank Adaptation (LoRA) can replicate an artist's style or subject using minimal data and computation.
We show that LoRA weights alone can serve as an effective descriptor of style, without the need for additional image generation or knowledge of the original training set.
We conclude with a discussion on potential future applications, such as zero-shot LoRA fine-tuning and model attribution.
arXiv Detail & Related papers (2024-12-16T18:18:17Z) - UIR-LoRA: Achieving Universal Image Restoration through Multiple Low-Rank Adaptation [50.27688690379488]
Existing unified methods treat multi-degradation image restoration as a multi-task learning problem.
We propose a universal image restoration framework based on multiple low-rank adapters (LoRA) from multi-domain transfer learning.
Our framework leverages the pre-trained generative model as the shared component for multi-degradation restoration and transfers it to specific degradation image restoration tasks.
arXiv Detail & Related papers (2024-09-30T11:16:56Z) - Mixture of LoRA Experts [87.50120181861362]
This paper introduces the Mixture of LoRA Experts (MoLE) approach, which harnesses hierarchical control and unfettered branch selection.
The MoLE approach achieves superior LoRA fusion performance in comparison to direct arithmetic merging.
arXiv Detail & Related papers (2024-04-21T11:59:53Z) - Implicit Style-Content Separation using B-LoRA [61.664293840163865]
We introduce B-LoRA, a method that implicitly separate the style and content components of a single image.
By analyzing the architecture of SDXL combined with LoRA, we find that jointly learning the LoRA weights of two specific blocks achieves style-content separation.
arXiv Detail & Related papers (2024-03-21T17:20:21Z) - Multi-LoRA Composition for Image Generation [107.83002438126832]
We study multi-LoRA composition through a decoding-centric perspective.
We present two training-free methods: LoRA Switch, which alternates between different LoRAs at each denoising step, and LoRA Composite, which simultaneously incorporates all LoRAs to guide more cohesive image synthesis.
arXiv Detail & Related papers (2024-02-26T18:59:18Z) - ZipLoRA: Any Subject in Any Style by Effectively Merging LoRAs [56.85106417530364]
Low-rank adaptations (LoRA) have been proposed as a parameter-efficient way of achieving concept-driven personalization.
We propose ZipLoRA, a method to cheaply and effectively merge independently trained style and subject LoRAs.
Experiments show that ZipLoRA can generate compelling results with meaningful improvements over baselines in subject and style fidelity.
arXiv Detail & Related papers (2023-11-22T18:59:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.