論文の概要: Multi-Bin Batching for Increasing LLM Inference Throughput
- arxiv url: http://arxiv.org/abs/2412.04504v1
- Date: Tue, 03 Dec 2024 03:16:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:56:56.307210
- Title: Multi-Bin Batching for Increasing LLM Inference Throughput
- Title(参考訳): LLM推論スループット向上のためのマルチビンバッチ
- Authors: Ozgur Guldogan, Jackson Kunde, Kangwook Lee, Ramtin Pedarsani,
- Abstract要約: 大規模言語モデル(LL)は、システムの効率性を向上させるために人気が高まっている。
リクエストはサーバ上のジョブをスケジューリングする重要なステップです。
リクエストは、しばしば異なる生成長を持ち、リソースの未利用を引き起こす。
我々は、この問題をキューイング理論の観点から形式化し、スループット制御ポリシーを設計することを目的とする。
- 参考スコア(独自算出の注目度): 19.652542432683234
- License:
- Abstract: As large language models (LLMs) grow in popularity for their diverse capabilities, improving the efficiency of their inference systems has become increasingly critical. Batching LLM requests is a critical step in scheduling the inference jobs on servers (e.g. GPUs), enabling the system to maximize throughput by allowing multiple requests to be processed in parallel. However, requests often have varying generation lengths, causing resource underutilization, as hardware must wait for the longest-running request in the batch to complete before moving to the next batch. We formalize this problem from a queueing-theoretic perspective, and aim to design a control policy which is throughput-optimal. We propose Multi-Bin Batching, a simple yet effective method that can provably improve LLM inference throughput by grouping requests with similar (predicted) execution times into predetermined bins. Through a combination of theoretical analysis and experiments, including real-world LLM inference scenarios, we demonstrate significant throughput gains compared to standard batching approaches.
- Abstract(参考訳): 大規模言語モデル(LLM)が多種多様な能力で人気を増すにつれ、推論システムの効率性の向上がますます重要になっている。
LLMリクエストのバッチ化は、サーバ上の推論ジョブ(GPUなど)をスケジューリングする上で重要なステップであり、複数のリクエストを並列に処理することでスループットを最大化する。
ハードウェアは次のバッチに移行する前に、バッチ内で最も長い要求が完了するのを待たなければならない。
我々は、この問題をキューイング理論の観点から形式化し、スループット最適化の制御ポリシーを設計することを目的としている。
我々は,LLM推論のスループットを,類似した(予測された)実行時間で所定のビンにグループ化することで向上させる,シンプルかつ効果的な手法であるMulti-Bin Batchingを提案する。
実世界のLLM推論シナリオを含む理論解析と実験を組み合わせることで、標準的なバッチ処理手法と比較して大きなスループット向上を示す。
関連論文リスト
- Dipper: Diversity in Prompts for Producing Large Language Model Ensembles in Reasoning tasks [39.820621967837205]
大規模言語モデルの性能を高める推論時間法は、シーケンシャルなクエリに大きく依存しているが、過去の研究で有効であることが示されている。
本稿では,1つのモデルに最適化された多様なプロンプトを並列に供給する,新しい学習不要なLLMアンサンブルフレームワークを提案する。
実験により,本手法が算数推論タスク,例えばMATHにおいて有意な向上をもたらすことを実証した。
論文 参考訳(メタデータ) (2024-12-12T17:49:05Z) - Efficient LLM Scheduling by Learning to Rank [19.33941579312897]
そこで本研究では,要求の集合における出力長の相対的なランクを,学習者によるランク付けによって予測可能であることを示す。
我々は,LLM推論のための新しいスケジューラを開発し,SJFスケジュールを既存手法よりも高速に近似する。
論文 参考訳(メタデータ) (2024-08-28T13:35:54Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
クエリ依存型プロンプト最適化(QPO)を導入し、入力クエリに合わせて最適なプロンプトを生成するために、小さな事前訓練された言語モデルを反復的に微調整する。
我々は、オープンソースのタスクに様々なプロンプトをベンチマークする副産物として、すでに大量に存在するオフラインのプロンプトデータから洞察を得る。
様々なLLMスケールと多様なNLPおよび数学タスクの実験は、ゼロショットと少数ショットの両方のシナリオにおいて、我々の手法の有効性とコスト効率を実証している。
論文 参考訳(メタデータ) (2024-08-20T03:06:48Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示しており、最近、IoT(Internet of Things)アプリケーションにLLMの能力を統合することが研究の注目を集めている。
セキュリティ上の懸念から、多くの機関は最先端の商用LLMサービスへのアクセスを避け、ローカルネットワーク環境でのオープンソースLLMのデプロイと利用を必要としている。
本研究では,LLMを用いた生成IoT(Generative IoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - One Queue Is All You Need: Resolving Head-of-Line Blocking in Large Language Model Serving [2.9164564021428845]
大規模言語モデル(LLM)サービスのためのマルチモデルキュー管理フレームワークを提案する。
QLM は複数の LLM Serving Operations (LSOs) の動作をオーケストレーションし、HOL ブロックの削減と達成率の最大化を図っている。
実世界のLLMサービスデータセットを用いた異種GPUデバイスおよびモデルの評価では、QLMはSLO達成率を40-90%改善し、スループットを20-400%向上した。
論文 参考訳(メタデータ) (2024-06-05T21:17:34Z) - FollowBench: A Multi-level Fine-grained Constraints Following Benchmark for Large Language Models [79.62191017182518]
FollowBenchは、大規模言語モデルのベンチマークに続くきめ細かい制約のベンチマークである。
本稿では,初期命令に段階的に1つの制約を付加するマルチレベル機構を提案する。
FollowBench上での13のLLMの評価により,LLMの弱さと今後の研究への道のりを示す。
論文 参考訳(メタデータ) (2023-10-31T12:32:38Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
大規模言語モデル(LLM)は、最近、テキストを介してコンテキスト対応の応答を提供するという、印象的な能力を実証した。
この能力は、パターン補完に関連するシーケンシャルな意思決定タスクにおいて、妥当なソリューションを予測するために使われる可能性がある。
第一強化学習(RL)エージェントによって部分的に完了したタスクに対する解を提案するために,LLMのこの予測能力を利用するLaGRを紹介した。
論文 参考訳(メタデータ) (2023-08-21T02:07:35Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
大規模言語モデル(LLM)はAIの分野に革命をもたらし、様々なタスクで前例のない能力を示している。
本稿では,LLMのパワーを利用する効率的なLLM推論パイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:36:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。