Solving High-dimensional Inverse Problems Using Amortized Likelihood-free Inference with Noisy and Incomplete Data
- URL: http://arxiv.org/abs/2412.04565v2
- Date: Thu, 26 Dec 2024 21:57:29 GMT
- Title: Solving High-dimensional Inverse Problems Using Amortized Likelihood-free Inference with Noisy and Incomplete Data
- Authors: Jice Zeng, Yuanzhe Wang, Alexandre M. Tartakovsky, David Barajas-Solano,
- Abstract summary: We present a likelihood-free probabilistic inversion method based on normalizing flows for high-dimensional inverse problems.
The proposed method is composed of two complementary networks: a summary network for data compression and an inference network for parameter estimation.
We apply the proposed method to an inversion problem in groundwater hydrology to estimate the posterior distribution of the log-conductivity field conditioned on spatially sparse time-series observations.
- Score: 43.43717668587333
- License:
- Abstract: We present a likelihood-free probabilistic inversion method based on normalizing flows for high-dimensional inverse problems. The proposed method is composed of two complementary networks: a summary network for data compression and an inference network for parameter estimation. The summary network encodes raw observations into a fixed-size vector of summary features, while the inference network generates samples of the approximate posterior distribution of the model parameters based on these summary features. The posterior samples are produced in a deep generative fashion by sampling from a latent Gaussian distribution and passing these samples through an invertible transformation. We construct this invertible transformation by sequentially alternating conditional invertible neural network and conditional neural spline flow layers. The summary and inference networks are trained simultaneously. We apply the proposed method to an inversion problem in groundwater hydrology to estimate the posterior distribution of the log-conductivity field conditioned on spatially sparse time-series observations of the system's hydraulic head responses.The conductivity field is represented with 706 degrees of freedom in the considered problem.The comparison with the likelihood-based iterative ensemble smoother PEST-IES method demonstrates that the proposed method accurately estimates the parameter posterior distribution and the observations' predictive posterior distribution at a fraction of the inference time of PEST-IES.
Related papers
- Back-Projection Diffusion: Solving the Wideband Inverse Scattering Problem with Diffusion Models [2.717354728562311]
We present an end-to-end probabilistic framework for approximating the posterior distribution from wideband scattering data.
We use conditional diffusion models coupled with the underlying physics of wave-propagation and symmetries in the problem.
Our framework is able to provide sharp reconstructions effortlessly, even recovering sub-Nyquist features in the multiple-scattering regime.
arXiv Detail & Related papers (2024-08-05T23:33:24Z) - Amortized Posterior Sampling with Diffusion Prior Distillation [55.03585818289934]
We propose a variational inference approach to sample from the posterior distribution for solving inverse problems.
We show that our method is applicable to standard signals in Euclidean space, as well as signals on manifold.
arXiv Detail & Related papers (2024-07-25T09:53:12Z) - Joint Bayesian Inference of Graphical Structure and Parameters with a
Single Generative Flow Network [59.79008107609297]
We propose in this paper to approximate the joint posterior over the structure of a Bayesian Network.
We use a single GFlowNet whose sampling policy follows a two-phase process.
Since the parameters are included in the posterior distribution, this leaves more flexibility for the local probability models.
arXiv Detail & Related papers (2023-05-30T19:16:44Z) - Refining Amortized Posterior Approximations using Gradient-Based Summary
Statistics [0.9176056742068814]
We present an iterative framework to improve the amortized approximations of posterior distributions in the context of inverse problems.
We validate our method in a controlled setting by applying it to a stylized problem, and observe improved posterior approximations with each iteration.
arXiv Detail & Related papers (2023-05-15T15:47:19Z) - Diffusion Posterior Sampling for General Noisy Inverse Problems [50.873313752797124]
We extend diffusion solvers to handle noisy (non)linear inverse problems via approximation of the posterior sampling.
Our method demonstrates that diffusion models can incorporate various measurement noise statistics.
arXiv Detail & Related papers (2022-09-29T11:12:27Z) - Reliable amortized variational inference with physics-based latent
distribution correction [0.4588028371034407]
A neural network is trained to approximate the posterior distribution over existing pairs of model and data.
The accuracy of this approach relies on the availability of high-fidelity training data.
We show that our correction step improves the robustness of amortized variational inference with respect to changes in number of source experiments, noise variance, and shifts in the prior distribution.
arXiv Detail & Related papers (2022-07-24T02:38:54Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Parameterizing uncertainty by deep invertible networks, an application
to reservoir characterization [0.9176056742068814]
Uncertainty quantification for full-waveform inversion provides a probabilistic characterization of the ill-conditioning of the problem.
We propose an approach characterized by training a deep network that "pushes forward" Gaussian random inputs into the model space as if they were sampled from the actual posterior distribution.
arXiv Detail & Related papers (2020-04-16T18:37:56Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
We propose to compute features only at sparsely sampled locations.
We then densely reconstruct the feature map with an efficient procedure.
The presented network is experimentally shown to save substantial computation while maintaining accuracy over a variety of computer vision tasks.
arXiv Detail & Related papers (2020-03-19T15:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.