論文の概要: Show, Don't Tell: Uncovering Implicit Character Portrayal using LLMs
- arxiv url: http://arxiv.org/abs/2412.04576v1
- Date: Thu, 05 Dec 2024 19:46:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:58:06.280520
- Title: Show, Don't Tell: Uncovering Implicit Character Portrayal using LLMs
- Title(参考訳): LLMを使って不適切な文字のポートレイルを発見
- Authors: Brandon Jaipersaud, Zining Zhu, Frank Rudzicz, Elliot Creager,
- Abstract要約: LIIPA(LIIPA)は,大きな言語モデルに暗黙的文字の描写を明らかにするためのフレームワークである。
LIIPAは既存の手法よりも優れており,文字数の増加に対してより堅牢であることがわかった。
我々の研究は、複雑な文字を解析するためにLLMを使うことの潜在的な利点を実証している。
- 参考スコア(独自算出の注目度): 19.829683714192615
- License:
- Abstract: Tools for analyzing character portrayal in fiction are valuable for writers and literary scholars in developing and interpreting compelling stories. Existing tools, such as visualization tools for analyzing fictional characters, primarily rely on explicit textual indicators of character attributes. However, portrayal is often implicit, revealed through actions and behaviors rather than explicit statements. We address this gap by leveraging large language models (LLMs) to uncover implicit character portrayals. We start by generating a dataset for this task with greater cross-topic similarity, lexical diversity, and narrative lengths than existing narrative text corpora such as TinyStories and WritingPrompts. We then introduce LIIPA (LLMs for Inferring Implicit Portrayal for Character Analysis), a framework for prompting LLMs to uncover character portrayals. LIIPA can be configured to use various types of intermediate computation (character attribute word lists, chain-of-thought) to infer how fictional characters are portrayed in the source text. We find that LIIPA outperforms existing approaches, and is more robust to increasing character counts (number of unique persons depicted) due to its ability to utilize full narrative context. Lastly, we investigate the sensitivity of portrayal estimates to character demographics, identifying a fairness-accuracy tradeoff among methods in our LIIPA framework -- a phenomenon familiar within the algorithmic fairness literature. Despite this tradeoff, all LIIPA variants consistently outperform non-LLM baselines in both fairness and accuracy. Our work demonstrates the potential benefits of using LLMs to analyze complex characters and to better understand how implicit portrayal biases may manifest in narrative texts.
- Abstract(参考訳): フィクションにおける登場人物の描写を分析するための道具は、作家や文学者にとって魅力的な物語の開発と解釈に有用である。
架空の文字を分析するための可視化ツールのような既存のツールは、主に文字属性の明示的なテキストインジケータに依存している。
しかし、描写はしばしば暗黙的であり、明示的な言明よりも行動や行動を通じて明らかである。
我々は,大きな言語モデル(LLM)を活用して,暗黙的な文字表現を明らかにすることで,このギャップに対処する。
まず,TinyStories やWriteingPrompts のような既存の物語テキストコーパスよりも,クロストピックな類似性,語彙的多様性,物語の長さのデータセットを生成する。
次に,LIIPA (LLMs for Inferring Implicit Portrayal for Character Analysis) を導入する。
LIIPAは、様々なタイプの中間計算(キャラクタ属性ワードリスト、チェーン・オブ・プリート)を使用して、原文で架空の文字がどのように描かれるかを推測することができる。
LIIPAは既存のアプローチよりも優れており、物語のコンテキストをフルに活用できるため、文字数の増加(描写数)に頑健であることがわかった。
最後に,LIIPAフレームワークにおける手法間の公平さと正確さのトレードオフを識別し,特徴量に対する描写推定の感度について検討する。
このトレードオフにもかかわらず、全てのLIIPA変種は、公平性と正確性の両方において、非LLMのベースラインを一貫して上回っている。
我々の研究は、複雑な文字を分析し、物語テキストに暗黙的な表現バイアスがどのように現れるかをよりよく理解するためにLLMを使うことの潜在的な利点を実証する。
関連論文リスト
- Beyond Profile: From Surface-Level Facts to Deep Persona Simulation in LLMs [50.0874045899661]
本稿では,キャラクタの言語パターンと特徴的思考過程の両方を再現するモデルであるキャラクタボットを紹介する。
ケーススタディとしてLu Xunを用いて、17冊のエッセイコレクションから得られた4つのトレーニングタスクを提案する。
これには、外部の言語構造と知識を習得することに焦点を当てた事前訓練タスクと、3つの微調整タスクが含まれる。
言語的正確性と意見理解の3つのタスクにおいて、キャラクタボットを評価し、適応されたメトリクスのベースラインを著しく上回ることを示す。
論文 参考訳(メタデータ) (2025-02-18T16:11:54Z) - BookWorm: A Dataset for Character Description and Analysis [59.186325346763184]
本稿では,短い事実プロファイルを生成する文字記述と,詳細な解釈を提供する文字解析という2つのタスクを定義する。
本稿では,Gutenbergプロジェクトからの書籍と,人間による記述と分析のペアリングを行うBookWormデータセットを紹介する。
その結果,検索に基づくアプローチは両タスクにおいて階層的アプローチよりも優れていた。
論文 参考訳(メタデータ) (2024-10-14T10:55:58Z) - Improving Quotation Attribution with Fictional Character Embeddings [11.259583037191772]
本稿では,文字のグローバルなスタイリスティックな情報をエンコードする文字埋め込みにより,人気のある引用帰属システムであるBookNLPを提案する。
提案するグローバル文字埋め込みとBookNLPの文脈情報を組み合わせることで,アナフォリックおよび暗黙的引用のための話者識別が向上することを示す。
論文 参考訳(メタデータ) (2024-06-17T09:46:35Z) - CHIRON: Rich Character Representations in Long-Form Narratives [98.273323001781]
文字のテキスト情報を整理・フィルタリングする新しい文字シートの表現であるCHIRONを提案する。
実験の結果,CHIRONは類似の要約に基づくベースラインよりも優れ,柔軟であることが判明した。
CHIRONから派生したメトリクスは、ストーリーのキャラクター中心性を自動的に推測するために使用することができ、これらのメトリクスは人間の判断と一致している。
論文 参考訳(メタデータ) (2024-06-14T17:23:57Z) - LFED: A Literary Fiction Evaluation Dataset for Large Language Models [58.85989777743013]
元々は中国語で書かれたか、中国語に翻訳された95の文学小説を収集し、数世紀にわたって幅広い話題を扱っている。
質問分類を8つのカテゴリーで定義し,1,304の質問の作成を導く。
我々は、小説の特定の属性(小説の種類、文字番号、出版年など)がLLMのパフォーマンスに与える影響を詳細に分析する。
論文 参考訳(メタデータ) (2024-05-16T15:02:24Z) - Evaluating Character Understanding of Large Language Models via Character Profiling from Fictional Works [33.817319226631426]
大規模言語モデル(LLM)は印象的なパフォーマンスを示し、多くのAIアプリケーションに拍車をかけた。
これらのRPAの前提条件は、LLMが架空の作品からキャラクターを理解する能力にある。
これまでの努力は、基本的な分類タスクや特徴的模倣を通じて、この機能を評価してきた。
論文 参考訳(メタデータ) (2024-04-19T09:10:29Z) - Character is Destiny: Can Role-Playing Language Agents Make Persona-Driven Decisions? [59.0123596591807]
我々は、ペルソナ駆動意思決定におけるLarge Language Models(LLM)の能力をベンチマークする。
高品質な小説において, LLM が先行する物語のキャラクターの判断を予測できるかどうかを検討する。
その結果、現状のLLMは、このタスクに有望な能力を示すが、改善の余地は残されている。
論文 参考訳(メタデータ) (2024-04-18T12:40:59Z) - StoryGPT-V: Large Language Models as Consistent Story Visualizers [39.790319429455856]
生成モデルは、テキストのプロンプトに基づいて、現実的で視覚的に喜ばしい画像を生成する素晴らしい能力を示しています。
しかし、新興のLarge Language Model(LLM)はあいまいな参照をナビゲートする堅牢な推論能力を示している。
遅延拡散(LDM)とLDMの利点を生かしたtextbfStoryGPT-V を導入し,一貫した高品質な画像を生成する。
論文 参考訳(メタデータ) (2023-12-04T18:14:29Z) - Large Language Models Meet Harry Potter: A Bilingual Dataset for
Aligning Dialogue Agents with Characters [70.84938803753062]
本稿では,対話エージェントと文字アライメントの研究を進めるために設計されたHarry Potter Dialogueデータセットを紹介する。
このデータセットはハリー・ポッターシリーズのすべての対話セッション(英語と中国語の両方)を含んでいる。
対話シーン、話者、人物関係、属性など、重要な背景情報とともに注釈付けされている。
論文 参考訳(メタデータ) (2022-11-13T10:16:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。