論文の概要: Specification-Driven Code Translation Powered by Large Language Models: How Far Are We?
- arxiv url: http://arxiv.org/abs/2412.04590v1
- Date: Thu, 05 Dec 2024 20:10:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:57:14.052518
- Title: Specification-Driven Code Translation Powered by Large Language Models: How Far Are We?
- Title(参考訳): 大規模言語モデルによる仕様駆動型コード翻訳: どれくらい遠いか?
- Authors: Soumit Kanti Saha, Fazle Rabbi, Song Wang, Jinqiu Yang,
- Abstract要約: コード翻訳の中間表現としてNL-specificationを用いる。
以上の結果から,NL特異化だけでは性能改善には至らないことが明らかとなった。
コード翻訳の性能解析に加えて,翻訳コードの品質についても検討する。
- 参考スコア(独自算出の注目度): 8.534857249221844
- License:
- Abstract: Large Language Models (LLMs) are increasingly being applied across various domains, including code-related tasks such as code translation. Previous studies have explored using LLMs for translating code between different programming languages. Since LLMs are more effective with natural language, using natural language as an intermediate representation in code translation tasks presents a promising approach. In this work, we investigate using NL-specification as an intermediate representation for code translation. We evaluate our method using three datasets, five popular programming languages, and 29 language pair permutations. Our results show that using NL-specification alone does not lead to performance improvements. However, when combined with source code, it provides a slight improvement over the baseline in certain language pairs. Besides analyzing the performance of code translation, we also investigate the quality of the translated code and provide insights into the issues present in the translated code.
- Abstract(参考訳): 大規模言語モデル(LLM)は、コード翻訳などのコード関連タスクなど、さまざまな領域にまたがって適用されつつある。
従来の研究では、異なるプログラミング言語間でのコード翻訳にLLMを使うことが検討されている。
LLMは自然言語でより効果的であるため、コード翻訳タスクの中間表現として自然言語を用いると、有望なアプローチが提示される。
本研究では,コード翻訳の中間表現としてNL仕様を用いる。
提案手法は,3つのデータセット,5つの人気プログラミング言語,29の言語対置換を用いて評価する。
以上の結果から,NL特異化だけでは性能改善には至らないことが明らかとなった。
しかし、ソースコードと組み合わせると、特定の言語ペアのベースラインよりもわずかに改善される。
また,コード翻訳の性能の解析に加えて,翻訳コードの品質を調査し,翻訳コードに存在する問題に対する洞察を提供する。
関連論文リスト
- Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
本稿では,自然言語と符号化機能の統合性を高めるための事前学習戦略を提案する。
結果のモデルであるCrystalは、両方のドメインで顕著な能力を示します。
論文 参考訳(メタデータ) (2024-11-06T10:28:46Z) - Unraveling the Potential of Large Language Models in Code Translation: How Far Are We? [4.616570111453259]
大規模言語モデル(LLM)は様々なタスクにおいて最先端のパフォーマンスを示すが、コード翻訳には苦労する。
コード翻訳タスクにおけるLLMの能力と能力を利用するための大規模な実証的研究を行う。
提案手法は,(1)ソースと対象言語間の中間言語を選択する中間翻訳と,(2)自己生成並列データ上でLPMを微調整する自己学習である。
論文 参考訳(メタデータ) (2024-10-13T12:20:12Z) - SpecTra: Enhancing the Code Translation Ability of Language Models by Generating Multi-Modal Specifications [17.60108067953814]
大規模言語モデル(LLM)は、コード翻訳の自動化作業にますます利用されている。
本稿では,新しい自己整合性フィルタを用いて,まず高品質な仕様を生成するマルチステージアプローチであるSpecTraを提案する。
論文 参考訳(メタデータ) (2024-05-28T20:48:30Z) - IRCoder: Intermediate Representations Make Language Models Robust Multilingual Code Generators [49.903001442804594]
本研究では、コンパイラ中間表現(IR)を活用して、Code-LMの多言語機能を改善する可能性について検討する。
まず,約400万のソースコードファイルからなる並列データセットであるSLTransをコンパイルする。
次に、SLTransにおける因果言語モデリングトレーニングを継続して実施し、Code-LMはIR言語を学習せざるを得なかった。
IRCoderと呼ばれる結果のモデルは、さまざまなコード生成タスクやメトリクスに対して、サイズと一貫性のあるゲインを表示します。
論文 参考訳(メタデータ) (2024-03-06T17:52:08Z) - Exploring Large Language Models for Code Explanation [3.2570216147409514]
大規模言語モデル(LLM)は自然言語処理において顕著な進歩を遂げている。
本研究では,様々なLLMを用いて,コードスニペットの自然言語要約を生成するタスクについて検討する。
論文 参考訳(メタデータ) (2023-10-25T14:38:40Z) - CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model [58.127534002232096]
本稿では,オープンソースの事前学習型LLMであるCodeFuse-13Bを紹介する。
英語と中国語の両方のプロンプトによるコード関連のタスク用に特別に設計されている。
CodeFuseは、高品質な事前トレーニングデータセットを利用することで、その効果を達成する。
論文 参考訳(メタデータ) (2023-10-10T02:38:44Z) - Lost in Translation: A Study of Bugs Introduced by Large Language Models
while Translating Code [5.915447908295047]
コード翻訳における一般LLMとコードLLMの能力について,大規模な実証的研究を行った。
私たちの研究は、3つのベンチマークと2つの実世界のプロジェクトからの1,700のコードサンプルの翻訳に関するものです。
LLMの正しい翻訳は2.1%から47.3%であることがわかった。
論文 参考訳(メタデータ) (2023-08-06T13:33:13Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z) - X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained
Language Models [103.75890012041366]
言語モデル(LM)は、事実の知識を捉えるのに驚くほど成功した。
しかし、LMの実際の表現能力の研究は、ほぼ間違いなく英語で行われている。
我々は23の語型的多様言語に対するクローゼスタイルプローブのベンチマークを作成する。
論文 参考訳(メタデータ) (2020-10-13T05:29:56Z) - Code to Comment "Translation": Data, Metrics, Baselining & Evaluation [49.35567240750619]
本稿では,この課題に対する最近のコード・コンパートメント・データセットについて分析する。
それらをWMT19と比較する。WMT19は、アート自然言語翻訳者の状態のトレーニングに頻繁に使用される標準データセットである。
ソースコードデータとWMT19自然言語データの間には,いくつかの興味深い違いがある。
論文 参考訳(メタデータ) (2020-10-03T18:57:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。