Assessing and Learning Alignment of Unimodal Vision and Language Models
- URL: http://arxiv.org/abs/2412.04616v1
- Date: Thu, 05 Dec 2024 21:04:58 GMT
- Title: Assessing and Learning Alignment of Unimodal Vision and Language Models
- Authors: Le Zhang, Qian Yang, Aishwarya Agrawal,
- Abstract summary: We propose a direct assessment method, inspired by linear probing, to assess vision-language alignment.
Next, we introduce Swift Alignment of Image and Language (SAIL), a efficient transfer learning framework that aligns pretrained unimodal vision and language models for downstream vision-language tasks.
SAIL achieves 73.4% zero-shot accuracy on ImageNet (vs. CLIP's 72.7%) and excels in zero-shot retrieval, complex reasoning, and semantic segmentation.
- Score: 24.27638318837459
- License:
- Abstract: How well are unimodal vision and language models aligned? Although prior work have approached answering this question, their assessment methods do not directly translate to how these models are used in practical vision-language tasks. In this paper, we propose a direct assessment method, inspired by linear probing, to assess vision-language alignment. We identify that the degree of alignment of the SSL vision models depends on their SSL training objective, and we find that the clustering quality of SSL representations has a stronger impact on alignment performance than their linear separability. Next, we introduce Swift Alignment of Image and Language (SAIL), a efficient transfer learning framework that aligns pretrained unimodal vision and language models for downstream vision-language tasks. Since SAIL leverages the strengths of pretrained unimodal models, it requires significantly fewer (6%) paired image-text data for the multimodal alignment compared to models like CLIP which are trained from scratch. SAIL training only requires a single A100 GPU, 5 hours of training and can accommodate a batch size up to 32,768. SAIL achieves 73.4% zero-shot accuracy on ImageNet (vs. CLIP's 72.7%) and excels in zero-shot retrieval, complex reasoning, and semantic segmentation. Additionally, SAIL improves the language-compatibility of vision encoders that in turn enhance the performance of multimodal large language models. The entire codebase and model weights are open-source: https://lezhang7.github.io/sail.github.io/
Related papers
- DINOv2 Meets Text: A Unified Framework for Image- and Pixel-Level Vision-Language Alignment [20.953645420787527]
We train a CLIP-like model with only a fraction of the computational cost compared to CLIP.
We achieve state-of-the-art results in zero-shot classification and open-vocabulary semantic segmentation.
arXiv Detail & Related papers (2024-12-20T20:46:48Z) - A Comparison of Language Modeling and Translation as Multilingual Pretraining Objectives [13.581385765600265]
Pretrained language models (PLMs) display impressive performances and have captured the attention of the NLP community.
This paper proposes a comparison of multilingual pretraining objectives in a controlled methodological environment.
arXiv Detail & Related papers (2024-07-22T09:16:30Z) - Bootstrapping Vision-Language Learning with Decoupled Language
Pre-training [46.570154746311935]
We present a novel methodology aimed at optimizing the application of frozen large language models (LLMs) for resource-intensive vision-language pre-training.
Our approach diverges by concentrating on the language component, specifically identifying the optimal prompts to align with visual features.
Our framework is modality-agnostic and flexible in terms of architectural design, as validated by its successful application in a video learning task.
arXiv Detail & Related papers (2023-07-13T21:08:15Z) - Contrastive Alignment of Vision to Language Through Parameter-Efficient
Transfer Learning [60.26952378997713]
Contrastive vision-language models (e.g. CLIP) are created by updating all the parameters of a vision model and language model through contrastive training.
We show that a minimal set of parameter updates ($$7%) can achieve the same performance as full-model training.
We describe a series of experiments: we show that existing knowledge is conserved more strongly in parameter-efficient training.
arXiv Detail & Related papers (2023-03-21T14:12:08Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - Transferring Pre-trained Multimodal Representations with Cross-modal
Similarity Matching [49.730741713652435]
In this paper, we propose a method that can effectively transfer the representations of a large pre-trained multimodal model into a small target model.
For unsupervised transfer, we introduce cross-modal similarity matching (CSM) that enables a student model to learn the representations of a teacher model.
To better encode the text prompts, we design context-based prompt augmentation (CPA) that can alleviate the lexical ambiguity of input text prompts.
arXiv Detail & Related papers (2023-01-07T17:24:11Z) - Localization vs. Semantics: Visual Representations in Unimodal and
Multimodal Models [57.08925810659545]
We conduct a comparative analysis of the visual representations in existing vision-and-language models and vision-only models.
Our empirical observations suggest that vision-and-language models are better at label prediction tasks.
We hope our study sheds light on the role of language in visual learning, and serves as an empirical guide for various pretrained models.
arXiv Detail & Related papers (2022-12-01T05:00:18Z) - CLIP-ViP: Adapting Pre-trained Image-Text Model to Video-Language
Representation Alignment [146.3128011522151]
We propose a Omni Crossmodal Learning method equipped with a Video Proxy mechanism on the basis of CLIP, namely CLIP-ViP.
Our approach improves the performance of CLIP on video-text retrieval by a large margin.
Our model also achieves SOTA results on a variety of datasets, including MSR-VTT, DiDeMo, LSMDC, and ActivityNet.
arXiv Detail & Related papers (2022-09-14T05:47:02Z) - Multimodal Knowledge Alignment with Reinforcement Learning [103.68816413817372]
ESPER extends language-only zero-shot models to unseen multimodal tasks, like image and audio captioning.
Our key novelty is to use reinforcement learning to align multimodal inputs to language model generations without direct supervision.
Experiments demonstrate that ESPER outperforms baselines and prior work on a variety of zero-shot tasks.
arXiv Detail & Related papers (2022-05-25T10:12:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.