A Comparison of Language Modeling and Translation as Multilingual Pretraining Objectives
- URL: http://arxiv.org/abs/2407.15489v2
- Date: Mon, 7 Oct 2024 08:55:15 GMT
- Title: A Comparison of Language Modeling and Translation as Multilingual Pretraining Objectives
- Authors: Zihao Li, Shaoxiong Ji, Timothee Mickus, Vincent Segonne, Jörg Tiedemann,
- Abstract summary: Pretrained language models (PLMs) display impressive performances and have captured the attention of the NLP community.
This paper proposes a comparison of multilingual pretraining objectives in a controlled methodological environment.
- Score: 13.581385765600265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pretrained language models (PLMs) display impressive performances and have captured the attention of the NLP community. Establishing best practices in pretraining has, therefore, become a major focus of NLP research, especially since insights gained from monolingual English models may not necessarily apply to more complex multilingual models. One significant caveat of the current state of the art is that different works are rarely comparable: they often discuss different parameter counts, training data, and evaluation methodology. This paper proposes a comparison of multilingual pretraining objectives in a controlled methodological environment. We ensure that training data and model architectures are comparable, and discuss the downstream performances across 6 languages that we observe in probing and fine-tuning scenarios. We make two key observations: (1) the architecture dictates which pretraining objective is optimal; (2) multilingual translation is a very effective pretraining objective under the right conditions. We make our code, data, and model weights available at \texttt{\url{https://github.com/Helsinki-NLP/lm-vs-mt}}.
Related papers
- Cross-Lingual Supervision improves Large Language Models Pre-training [36.932380291416365]
We demonstrate that pre-training Large Language Models on a mixture of a self-supervised Language Modeling objective and the supervised Machine Translation objective, yields models with better in-context learning abilities.
As pre-training is a very resource-intensive process and a grid search on the best mixing ratio between the two objectives is prohibitively expensive, we propose a simple yet effective strategy to learn it during pre-training.
arXiv Detail & Related papers (2023-05-19T16:14:07Z) - PEACH: Pre-Training Sequence-to-Sequence Multilingual Models for
Translation with Semi-Supervised Pseudo-Parallel Document Generation [5.004814662623874]
This paper introduces a novel semi-supervised method, SPDG, that generates high-quality pseudo-parallel data for multilingual pre-training.
Our experiments show that PEACH outperforms existing approaches used in training mT5 and mBART on various translation tasks.
arXiv Detail & Related papers (2023-04-03T18:19:26Z) - M-SpeechCLIP: Leveraging Large-Scale, Pre-Trained Models for
Multilingual Speech to Image Retrieval [56.49878599920353]
This work investigates the use of large-scale, English-only pre-trained models (CLIP and HuBERT) for multilingual image-speech retrieval.
For non-English image-speech retrieval, we outperform the current state-of-the-art performance by a wide margin both when training separate models for each language, and with a single model which processes speech in all three languages.
arXiv Detail & Related papers (2022-11-02T14:54:45Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
We propose a new pre-training objective, Sparse Latent Typing, which enables the model to sparsely extract sentence-level keywords with diverse latent types.
Experimental results show that our model is able to learn interpretable latent type categories in a self-supervised manner without using any external knowledge.
arXiv Detail & Related papers (2022-10-23T00:37:08Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
This study investigates the dynamics of the multilingual pretraining process.
We probe checkpoints taken from throughout XLM-R pretraining, using a suite of linguistic tasks.
Our analysis shows that the model achieves high in-language performance early on, with lower-level linguistic skills acquired before more complex ones.
arXiv Detail & Related papers (2022-05-24T03:35:00Z) - Pre-training Data Quality and Quantity for a Low-Resource Language: New
Corpus and BERT Models for Maltese [4.4681678689625715]
We analyse the effect of pre-training with monolingual data for a low-resource language.
We present a newly created corpus for Maltese, and determine the effect that the pre-training data size and domain have on the downstream performance.
We compare two models on the new corpus: a monolingual BERT model trained from scratch (BERTu), and a further pre-trained multilingual BERT (mBERTu)
arXiv Detail & Related papers (2022-05-21T06:44:59Z) - Probing Structured Pruning on Multilingual Pre-trained Models: Settings,
Algorithms, and Efficiency [62.0887259003594]
This work investigates three aspects of structured pruning on multilingual pre-trained language models: settings, algorithms, and efficiency.
Experiments on nine downstream tasks show several counter-intuitive phenomena.
We present Dynamic Sparsification, a simple approach that allows training the model once and adapting to different model sizes at inference.
arXiv Detail & Related papers (2022-04-06T06:29:52Z) - From Good to Best: Two-Stage Training for Cross-lingual Machine Reading
Comprehension [51.953428342923885]
We develop a two-stage approach to enhance the model performance.
The first stage targets at recall: we design a hard-learning (HL) algorithm to maximize the likelihood that the top-k predictions contain the accurate answer.
The second stage focuses on precision: an answer-aware contrastive learning mechanism is developed to learn the fine difference between the accurate answer and other candidates.
arXiv Detail & Related papers (2021-12-09T07:31:15Z) - InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language
Model Pre-Training [135.12061144759517]
We present an information-theoretic framework that formulates cross-lingual language model pre-training.
We propose a new pre-training task based on contrastive learning.
By leveraging both monolingual and parallel corpora, we jointly train the pretext to improve the cross-lingual transferability of pre-trained models.
arXiv Detail & Related papers (2020-07-15T16:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.