Hidden in the Noise: Two-Stage Robust Watermarking for Images
- URL: http://arxiv.org/abs/2412.04653v3
- Date: Sat, 01 Feb 2025 15:56:15 GMT
- Title: Hidden in the Noise: Two-Stage Robust Watermarking for Images
- Authors: Kasra Arabi, Benjamin Feuer, R. Teal Witter, Chinmay Hegde, Niv Cohen,
- Abstract summary: We present a distortion-free watermarking method for images based on a diffusion model's initial noise.
detecting the watermark requires comparing the initial noise reconstructed for an image to all previously used initial noises.
We propose a two-stage watermarking framework for efficient detection.
- Score: 25.731533630250798
- License:
- Abstract: As the quality of image generators continues to improve, deepfakes become a topic of considerable societal debate. Image watermarking allows responsible model owners to detect and label their AI-generated content, which can mitigate the harm. Yet, current state-of-the-art methods in image watermarking remain vulnerable to forgery and removal attacks. This vulnerability occurs in part because watermarks distort the distribution of generated images, unintentionally revealing information about the watermarking techniques. In this work, we first demonstrate a distortion-free watermarking method for images, based on a diffusion model's initial noise. However, detecting the watermark requires comparing the initial noise reconstructed for an image to all previously used initial noises. To mitigate these issues, we propose a two-stage watermarking framework for efficient detection. During generation, we augment the initial noise with generated Fourier patterns to embed information about the group of initial noises we used. For detection, we (i) retrieve the relevant group of noises, and (ii) search within the given group for an initial noise that might match our image. This watermarking approach achieves state-of-the-art robustness to forgery and removal against a large battery of attacks.
Related papers
- Robust Watermarks Leak: Channel-Aware Feature Extraction Enables Adversarial Watermark Manipulation [21.41643665626451]
We propose an attack framework that extracts leakage of watermark patterns using a pre-trained vision model.
Unlike prior works requiring massive data or detector access, our method achieves both forgery and detection evasion with a single watermarked image.
Our work exposes the robustness-stealthiness paradox: current "robust" watermarks sacrifice security for distortion resistance, providing insights for future watermark design.
arXiv Detail & Related papers (2025-02-10T12:55:08Z) - Image Watermarks are Removable Using Controllable Regeneration from Clean Noise [26.09012436917272]
A critical attribute of watermark techniques is their robustness against various manipulations.
We introduce a watermark removal approach capable of effectively nullifying the state of the art watermarking techniques.
arXiv Detail & Related papers (2024-10-07T20:04:29Z) - Certifiably Robust Image Watermark [57.546016845801134]
Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns.
Watermarking AI-generated content is a key technology to address these concerns.
We propose the first image watermarks with certified robustness guarantees against removal and forgery attacks.
arXiv Detail & Related papers (2024-07-04T17:56:04Z) - Perceptive self-supervised learning network for noisy image watermark
removal [59.440951785128995]
We propose a perceptive self-supervised learning network for noisy image watermark removal (PSLNet)
Our proposed method is very effective in comparison with popular convolutional neural networks (CNNs) for noisy image watermark removal.
arXiv Detail & Related papers (2024-03-04T16:59:43Z) - Removing Interference and Recovering Content Imaginatively for Visible
Watermark Removal [63.576748565274706]
This study introduces the Removing Interference and Recovering Content Imaginatively (RIRCI) framework.
RIRCI embodies a two-stage approach: the initial phase centers on discerning and segregating the watermark component, while the subsequent phase focuses on background content restoration.
To achieve meticulous background restoration, our proposed model employs a dual-path network capable of fully exploring the intrinsic background information beneath semi-transparent watermarks.
arXiv Detail & Related papers (2023-12-22T02:19:23Z) - Robustness of AI-Image Detectors: Fundamental Limits and Practical
Attacks [47.04650443491879]
We analyze the robustness of various AI-image detectors including watermarking and deepfake detectors.
We show that watermarking methods are vulnerable to spoofing attacks where the attacker aims to have real images identified as watermarked ones.
arXiv Detail & Related papers (2023-09-29T18:30:29Z) - Invisible Image Watermarks Are Provably Removable Using Generative AI [47.25747266531665]
Invisible watermarks safeguard images' copyrights by embedding hidden messages only detectable by owners.
We propose a family of regeneration attacks to remove these invisible watermarks.
The proposed attack method first adds random noise to an image to destroy the watermark and then reconstructs the image.
arXiv Detail & Related papers (2023-06-02T23:29:28Z) - Tree-Ring Watermarks: Fingerprints for Diffusion Images that are
Invisible and Robust [55.91987293510401]
Watermarking the outputs of generative models is a crucial technique for tracing copyright and preventing potential harm from AI-generated content.
We introduce a novel technique called Tree-Ring Watermarking that robustly fingerprints diffusion model outputs.
Our watermark is semantically hidden in the image space and is far more robust than watermarking alternatives that are currently deployed.
arXiv Detail & Related papers (2023-05-31T17:00:31Z) - Watermark Faker: Towards Forgery of Digital Image Watermarking [10.14145437847397]
We make the first attempt to develop digital image watermark fakers by using generative adversarial learning.
Our experiments show that the proposed watermark faker can effectively crack digital image watermarkers in both spatial and frequency domains.
arXiv Detail & Related papers (2021-03-23T12:28:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.