Image Watermarks are Removable Using Controllable Regeneration from Clean Noise
- URL: http://arxiv.org/abs/2410.05470v1
- Date: Mon, 7 Oct 2024 20:04:29 GMT
- Title: Image Watermarks are Removable Using Controllable Regeneration from Clean Noise
- Authors: Yepeng Liu, Yiren Song, Hai Ci, Yu Zhang, Haofan Wang, Mike Zheng Shou, Yuheng Bu,
- Abstract summary: A critical attribute of watermark techniques is their robustness against various manipulations.
We introduce a watermark removal approach capable of effectively nullifying the state of the art watermarking techniques.
- Score: 26.09012436917272
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Image watermark techniques provide an effective way to assert ownership, deter misuse, and trace content sources, which has become increasingly essential in the era of large generative models. A critical attribute of watermark techniques is their robustness against various manipulations. In this paper, we introduce a watermark removal approach capable of effectively nullifying the state of the art watermarking techniques. Our primary insight involves regenerating the watermarked image starting from a clean Gaussian noise via a controllable diffusion model, utilizing the extracted semantic and spatial features from the watermarked image. The semantic control adapter and the spatial control network are specifically trained to control the denoising process towards ensuring image quality and enhancing consistency between the cleaned image and the original watermarked image. To achieve a smooth trade-off between watermark removal performance and image consistency, we further propose an adjustable and controllable regeneration scheme. This scheme adds varying numbers of noise steps to the latent representation of the watermarked image, followed by a controlled denoising process starting from this noisy latent representation. As the number of noise steps increases, the latent representation progressively approaches clean Gaussian noise, facilitating the desired trade-off. We apply our watermark removal methods across various watermarking techniques, and the results demonstrate that our methods offer superior visual consistency/quality and enhanced watermark removal performance compared to existing regeneration approaches.
Related papers
- Image Watermarking of Generative Diffusion Models [42.982489491857145]
We propose a watermarking technique that embeds watermark features into the diffusion model itself.
Our technique enables training of a paired watermark extractor for a generative model that is learned through an end-to-end process.
We demonstrate highly accurate watermark embedding/detection and show that it is also possible to distinguish between different watermarks embedded with our method to differentiate between generative models.
arXiv Detail & Related papers (2025-02-12T09:00:48Z) - Robust Watermarks Leak: Channel-Aware Feature Extraction Enables Adversarial Watermark Manipulation [21.41643665626451]
We propose an attack framework that extracts leakage of watermark patterns using a pre-trained vision model.
Unlike prior works requiring massive data or detector access, our method achieves both forgery and detection evasion with a single watermarked image.
Our work exposes the robustness-stealthiness paradox: current "robust" watermarks sacrifice security for distortion resistance, providing insights for future watermark design.
arXiv Detail & Related papers (2025-02-10T12:55:08Z) - SuperMark: Robust and Training-free Image Watermarking via Diffusion-based Super-Resolution [27.345134138673945]
We propose SuperMark, a robust, training-free watermarking framework.
SuperMark embeds the watermark into initial Gaussian noise using existing techniques.
It then applies pre-trained Super-Resolution models to denoise the watermarked noise, producing the final watermarked image.
For extraction, the process is reversed: the watermarked image is inverted back to the initial watermarked noise via DDIM Inversion, from which the embedded watermark is extracted.
Experiments demonstrate that SuperMark achieves fidelity comparable to existing methods while significantly improving robustness.
arXiv Detail & Related papers (2024-12-13T11:20:59Z) - Hidden in the Noise: Two-Stage Robust Watermarking for Images [25.731533630250798]
We present a distortion-free watermarking method for images based on a diffusion model's initial noise.
detecting the watermark requires comparing the initial noise reconstructed for an image to all previously used initial noises.
We propose a two-stage watermarking framework for efficient detection.
arXiv Detail & Related papers (2024-12-05T22:50:42Z) - Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models [71.13610023354967]
Copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models.
We propose a diffusion model watermarking technique that is both performance-lossless and training-free.
arXiv Detail & Related papers (2024-04-07T13:30:10Z) - Perceptive self-supervised learning network for noisy image watermark
removal [59.440951785128995]
We propose a perceptive self-supervised learning network for noisy image watermark removal (PSLNet)
Our proposed method is very effective in comparison with popular convolutional neural networks (CNNs) for noisy image watermark removal.
arXiv Detail & Related papers (2024-03-04T16:59:43Z) - Removing Interference and Recovering Content Imaginatively for Visible
Watermark Removal [63.576748565274706]
This study introduces the Removing Interference and Recovering Content Imaginatively (RIRCI) framework.
RIRCI embodies a two-stage approach: the initial phase centers on discerning and segregating the watermark component, while the subsequent phase focuses on background content restoration.
To achieve meticulous background restoration, our proposed model employs a dual-path network capable of fully exploring the intrinsic background information beneath semi-transparent watermarks.
arXiv Detail & Related papers (2023-12-22T02:19:23Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
We introduce a novel task for the joint generation of text to image and watermark (T2IW)
This T2IW scheme ensures minimal damage to image quality when generating a compound image by forcing the semantic feature and the watermark signal to be compatible in pixels.
We demonstrate remarkable achievements in image quality, watermark invisibility, and watermark robustness, supported by our proposed set of evaluation metrics.
arXiv Detail & Related papers (2023-09-07T16:12:06Z) - WMFormer++: Nested Transformer for Visible Watermark Removal via Implict
Joint Learning [68.00975867932331]
Existing watermark removal methods mainly rely on UNet with task-specific decoder branches.
We introduce an implicit joint learning paradigm to holistically integrate information from both branches.
The results demonstrate our approach's remarkable superiority, surpassing existing state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2023-08-20T07:56:34Z) - Tree-Ring Watermarks: Fingerprints for Diffusion Images that are
Invisible and Robust [55.91987293510401]
Watermarking the outputs of generative models is a crucial technique for tracing copyright and preventing potential harm from AI-generated content.
We introduce a novel technique called Tree-Ring Watermarking that robustly fingerprints diffusion model outputs.
Our watermark is semantically hidden in the image space and is far more robust than watermarking alternatives that are currently deployed.
arXiv Detail & Related papers (2023-05-31T17:00:31Z) - Visible Watermark Removal via Self-calibrated Localization and
Background Refinement [21.632823897244037]
Superimposing visible watermarks on images provides a powerful weapon to cope with the copyright issue.
Modern watermark removal methods perform watermark localization and background restoration simultaneously.
We propose a two-stage multi-task network to address the above issues.
arXiv Detail & Related papers (2021-08-08T06:43:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.