Learning for Layered Safety-Critical Control with Predictive Control Barrier Functions
- URL: http://arxiv.org/abs/2412.04658v1
- Date: Thu, 05 Dec 2024 23:05:25 GMT
- Title: Learning for Layered Safety-Critical Control with Predictive Control Barrier Functions
- Authors: William D. Compton, Max H. Cohen, Aaron D. Ames,
- Abstract summary: Safety filters leveraging control barrier functions (CBFs) are highly effective for enforcing safe behavior on complex systems.
gaps between the RoM and FoM can result in safety violations.
This paper introduces emphpredictive CBFs to address this gap by leveraging rollouts of the FoM to define a predictive robustness term.
- Score: 26.692688699287213
- License:
- Abstract: Safety filters leveraging control barrier functions (CBFs) are highly effective for enforcing safe behavior on complex systems. It is often easier to synthesize CBFs for a Reduced order Model (RoM), and track the resulting safe behavior on the Full order Model (FoM) -- yet gaps between the RoM and FoM can result in safety violations. This paper introduces \emph{predictive CBFs} to address this gap by leveraging rollouts of the FoM to define a predictive robustness term added to the RoM CBF condition. Theoretically, we prove that this guarantees safety in a layered control implementation. Practically, we learn the predictive robustness term through massive parallel simulation with domain randomization. We demonstrate in simulation that this yields safe FoM behavior with minimal conservatism, and experimentally realize predictive CBFs on a 3D hopping robot.
Related papers
- Pareto Control Barrier Function for Inner Safe Set Maximization Under Input Constraints [50.920465513162334]
We introduce the PCBF algorithm to maximize the inner safe set of dynamical systems under input constraints.
We validate its effectiveness through comparison with Hamilton-Jacobi reachability for an inverted pendulum and through simulations on a 12-dimensional quadrotor system.
Results show that the PCBF consistently outperforms existing methods, yielding larger safe sets and ensuring safety under input constraints.
arXiv Detail & Related papers (2024-10-05T18:45:19Z) - Multi-Step Model Predictive Safety Filters: Reducing Chattering by
Increasing the Prediction Horizon [7.55113002732746]
Safety, the satisfaction of state and input constraints, can be guaranteed by augmenting the learned control policy with a safety filter.
Model predictive safety filters (MPSFs) are a common safety filtering approach based on model predictive control (MPC)
arXiv Detail & Related papers (2023-09-20T16:35:29Z) - Wasserstein Distributionally Robust Control Barrier Function using
Conditional Value-at-Risk with Differentiable Convex Programming [4.825619788907192]
Control Barrier functions (CBFs) have attracted extensive attention for designing safe controllers for real-world safety-critical systems.
We present distributional robust CBF to achieve resilience under distributional shift.
We also provide an approximate variant of DR-CBF for higher-order systems.
arXiv Detail & Related papers (2023-09-15T18:45:09Z) - Safe Neural Control for Non-Affine Control Systems with Differentiable
Control Barrier Functions [58.19198103790931]
This paper addresses the problem of safety-critical control for non-affine control systems.
It has been shown that optimizing quadratic costs subject to state and control constraints can be sub-optimally reduced to a sequence of quadratic programs (QPs) by using Control Barrier Functions (CBFs)
We incorporate higher-order CBFs into neural ordinary differential equation-based learning models as differentiable CBFs to guarantee safety for non-affine control systems.
arXiv Detail & Related papers (2023-09-06T05:35:48Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Gaussian Control Barrier Functions : A Non-Parametric Paradigm to Safety [7.921648699199647]
We propose a non-parametric approach for online synthesis of CBFs using Gaussian Processes (GPs)
GPs have favorable properties, in addition to being non-parametric, such as analytical tractability and robust uncertainty estimation.
We validate our approach experimentally on a quad by demonstrating safe control for fixed but arbitrary safe sets.
arXiv Detail & Related papers (2022-03-29T12:21:28Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
This paper addresses learning safe output feedback control laws from partial observations of expert demonstrations.
We first propose robust output control barrier functions (ROCBFs) as a means to guarantee safety.
We then formulate an optimization problem to learn ROCBFs from expert demonstrations that exhibit safe system behavior.
arXiv Detail & Related papers (2021-11-18T23:21:00Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) are popular tools for enforcing safety and stability of a controlled system, respectively.
We present a Gaussian Process (GP)-based approach to tackle the problem of model uncertainty in safety-critical controllers that use CBFs and CLFs.
arXiv Detail & Related papers (2021-06-13T23:08:49Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
We propose a learning based approach to safe controller synthesis based on control barrier functions (CBFs)
We analyze an optimization-based approach to learning a CBF that enjoys provable safety guarantees under suitable Lipschitz assumptions on the underlying dynamical system.
To the best of our knowledge, these are the first results that learn provably safe control barrier functions from data.
arXiv Detail & Related papers (2020-04-07T12:29:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.