CP-NCBF: A Conformal Prediction-based Approach to Synthesize Verified Neural Control Barrier Functions
- URL: http://arxiv.org/abs/2503.17395v1
- Date: Tue, 18 Mar 2025 10:01:06 GMT
- Title: CP-NCBF: A Conformal Prediction-based Approach to Synthesize Verified Neural Control Barrier Functions
- Authors: Manan Tayal, Aditya Singh, Pushpak Jagtap, Shishir Kolathaya,
- Abstract summary: Control Barrier Functions (CBFs) are a practical approach for designing safety-critical controllers.<n>Recent efforts have explored learning-based methods, such as neural CBFs, to address this issue.<n>We propose a novel framework that leverages split-conformal prediction to generate formally verified neural CBFs.
- Score: 2.092779643426281
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Control Barrier Functions (CBFs) are a practical approach for designing safety-critical controllers, but constructing them for arbitrary nonlinear dynamical systems remains a challenge. Recent efforts have explored learning-based methods, such as neural CBFs (NCBFs), to address this issue. However, ensuring the validity of NCBFs is difficult due to potential learning errors. In this letter, we propose a novel framework that leverages split-conformal prediction to generate formally verified neural CBFs with probabilistic guarantees based on a user-defined error rate, referred to as CP-NCBF. Unlike existing methods that impose Lipschitz constraints on neural CBF-leading to scalability limitations and overly conservative safe sets--our approach is sample-efficient, scalable, and results in less restrictive safety regions. We validate our framework through case studies on obstacle avoidance in autonomous driving and geo-fencing of aerial vehicles, demonstrating its ability to generate larger and less conservative safe sets compared to conventional techniques.
Related papers
- Neural Control Barrier Functions from Physics Informed Neural Networks [2.092779643426281]
This paper introduces a novel class of neural CBFs that leverages a physics-inspired neural network framework.
By utilizing reciprocal CBFs instead of zeroing CBFs, the proposed framework allows for the specification of flexible, user-defined safe regions.
arXiv Detail & Related papers (2025-04-15T10:13:30Z) - Exact Verification of ReLU Neural Control Barrier Functions [25.44521208451216]
Control Barrier Functions (CBFs) are a popular approach for safe control of nonlinear systems.
Recent machine learning methods that represent CBFs as neural networks have shown great promise.
This paper presents novel exact conditions and algorithms for verifying safety of feedforward NCBFs with ReLU activation functions.
arXiv Detail & Related papers (2023-10-13T18:59:04Z) - Safe Neural Control for Non-Affine Control Systems with Differentiable
Control Barrier Functions [58.19198103790931]
This paper addresses the problem of safety-critical control for non-affine control systems.
It has been shown that optimizing quadratic costs subject to state and control constraints can be sub-optimally reduced to a sequence of quadratic programs (QPs) by using Control Barrier Functions (CBFs)
We incorporate higher-order CBFs into neural ordinary differential equation-based learning models as differentiable CBFs to guarantee safety for non-affine control systems.
arXiv Detail & Related papers (2023-09-06T05:35:48Z) - Model-Assisted Probabilistic Safe Adaptive Control With Meta-Bayesian
Learning [33.75998206184497]
We develop a novel adaptive safe control framework that integrates meta learning, Bayesian models, and control barrier function (CBF) method.
Specifically, with the help of CBF method, we learn the inherent and external uncertainties by a unified adaptive Bayesian linear regression model.
For a new control task, we refine the meta-learned models using a few samples, and introduce pessimistic confidence bounds into CBF constraints to ensure safe control.
arXiv Detail & Related papers (2023-07-03T08:16:01Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
This paper addresses learning safe output feedback control laws from partial observations of expert demonstrations.
We first propose robust output control barrier functions (ROCBFs) as a means to guarantee safety.
We then formulate an optimization problem to learn ROCBFs from expert demonstrations that exhibit safe system behavior.
arXiv Detail & Related papers (2021-11-18T23:21:00Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) are popular tools for enforcing safety and stability of a controlled system, respectively.
We present a Gaussian Process (GP)-based approach to tackle the problem of model uncertainty in safety-critical controllers that use CBFs and CLFs.
arXiv Detail & Related papers (2021-06-13T23:08:49Z) - Reinforcement Learning for Safety-Critical Control under Model
Uncertainty, using Control Lyapunov Functions and Control Barrier Functions [96.63967125746747]
Reinforcement learning framework learns the model uncertainty present in the CBF and CLF constraints.
RL-CBF-CLF-QP addresses the problem of model uncertainty in the safety constraints.
arXiv Detail & Related papers (2020-04-16T10:51:33Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
We propose a learning based approach to safe controller synthesis based on control barrier functions (CBFs)
We analyze an optimization-based approach to learning a CBF that enjoys provable safety guarantees under suitable Lipschitz assumptions on the underlying dynamical system.
To the best of our knowledge, these are the first results that learn provably safe control barrier functions from data.
arXiv Detail & Related papers (2020-04-07T12:29:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.