論文の概要: Code generation and runtime techniques for enabling data-efficient deep learning training on GPUs
- arxiv url: http://arxiv.org/abs/2412.04747v1
- Date: Fri, 06 Dec 2024 03:20:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:56:51.489558
- Title: Code generation and runtime techniques for enabling data-efficient deep learning training on GPUs
- Title(参考訳): GPU上でデータ効率のよいディープラーニングトレーニングを可能にするコード生成と実行技術
- Authors: Kun Wu,
- Abstract要約: この論文は、特にグラフニューラルネットワーク(GNN)と大規模言語モデル(LLM)において、代表的深層学習タスクにおけるデータ非効率を解析する。
これらの課題を軽減し、PyTorchスタック内でこれらの最適化をシームレスに実装するための、新しいランタイムとコード生成技術を提案する。
- 参考スコア(独自算出の注目度): 8.00550423071637
- License:
- Abstract: As deep learning models scale, their training cost has surged significantly. Due to both hardware advancements and limitations in current software stacks, the need for data efficiency has risen. Data efficiency refers to the effective hiding of data access latency and the avoidance of unnecessary data movements. Major challenges arise from the growing disparity between GPU memory bandwidth and computational throughput, imminent GPU memory capacity limitations, and inefficiencies in the PyTorch software stack, including a lack of device-specific PCIe transfer optimizations and high-level domain-specific abstractions. To effectively mitigate these data inefficiencies for deep learning training, this dissertation analyzes data inefficiency in representative deep training tasks, specifically in graph neural networks (GNNs) and large language models (LLMs). It then proposes novel runtime and code generation techniques to mitigate these challenges and implements these optimizations seamlessly within the PyTorch stack while maintaining strong programmability and interoperability. First, PyTorch-Direct is devised to incorporate the GPU-centric PCIe data transfer paradigm in PyTorch for GNN training. Next, Hector intermediate representation (IR) and its code generator are proposed to introduce domain-specific high-level abstraction and systematically address memory-intensive performance challenges for relational GNNs. Finally, in LLM training, the throughput has been increasingly constrained by GPU memory capacity. To mitigate this, the SSDTrain offloading framework is designed and implemented. Together, these contributions show that code generation and runtime techniques can systematically mitigate the data management bottlenecks in deep learning training, which stem from the data-intensive nature of workloads and the oversimplification inherent in the deep learning training software stack.
- Abstract(参考訳): ディープラーニングモデルがスケールするにつれて、トレーニングコストは大幅に上昇しています。
ハードウェアの進歩と現在のソフトウェアスタックの制限により、データ効率の必要性が高まっている。
データ効率は、データアクセス遅延の効果的な隠蔽と不要なデータ移動の回避を指す。
主な課題は、GPUメモリ帯域幅と計算スループットの格差の増加、即時GPUメモリ容量制限、PyTorchソフトウェアスタックの非効率性、デバイス固有のPCIe転送最適化の欠如、高レベルのドメイン固有の抽象化などである。
この論文は、特にグラフニューラルネットワーク(GNN)や大規模言語モデル(LLM)において、代表的な深層学習タスクにおけるデータ非効率性を分析する。
そして、これらの課題を軽減するために新しいランタイムとコード生成技術を提案し、PyTorchスタック内でこれらの最適化をシームレスに実装し、プログラム可能性と相互運用性を強く維持する。
まず、PyTorch-DirectはGNNトレーニングのために、GPU中心のPCIeデータ転送パラダイムをPyTorchに組み込むように設計されている。
次に、ヘクター中間表現(IR)とそのコードジェネレータを提案し、ドメイン固有のハイレベル抽象化を導入し、リレーショナルGNNのメモリ集約性能問題に体系的に対処する。
最後に、LLMトレーニングでは、スループットはGPUメモリ容量によってますます制限されている。
これを軽減するため、SSDTrainオフロードフレームワークは設計および実装されている。
これらの貢献によって、ディープラーニングトレーニングにおけるデータ管理のボトルネックを、コード生成とランタイム技術が体系的に緩和できることが示される。
関連論文リスト
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
分散トレーニングは、システム設計と効率に関する重要な課題に直面します。
大規模深層ニューラルネットワーク(DNN)のトレーニング用に設計・実装された分散トレーニングシステムFusionLLMを提案する。
本システムと手法は,収束性を確保しつつ,ベースライン法と比較して1.45~9.39倍の高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-16T16:13:19Z) - Partitioned Neural Network Training via Synthetic Intermediate Labels [0.0]
GPUメモリの制約は、そのような巨大なモデルをトレーニングする上で、注目すべきボトルネックになっている。
この研究は、モデルをGPU間で分割し、個々のセグメントをトレーニングするために合成中間ラベルを生成することを提唱する。
このアプローチは、モデル精度を維持しながらデータ通信を最小限に抑える、より効率的なトレーニングプロセスをもたらす。
論文 参考訳(メタデータ) (2024-03-17T13:06:29Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
我々は、巨大な未使用のコンシューマレベルのGPUをアンロックする分散システムを構想する。
このシステムは、CPUとGPUメモリの制限、ネットワーク帯域幅の低さ、ピアとデバイスの多様性など、重要な課題に直面している。
論文 参考訳(メタデータ) (2023-09-03T13:27:56Z) - Accelerating Sampling and Aggregation Operations in GNN Frameworks with
GPU Initiated Direct Storage Accesses [9.773813896475264]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習するための強力なツールとして登場している。
大規模グラフ上でのGNNのトレーニングは、効率的なデータアクセスとデータ移動方法が欠如しているため、依然として大きな課題である。
大規模グラフに対するGPU指向GNNトレーニングを実現するために,GPU Initiated Direct Storage Access (GIDS) データローダを提案する。
論文 参考訳(メタデータ) (2023-06-28T17:22:15Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - DANCE: DAta-Network Co-optimization for Efficient Segmentation Model
Training and Inference [85.02494022662505]
DANCEは、効率的なセグメンテーションモデルのトレーニングと推論のための自動データネットワーク協調最適化である。
入力イメージを適応的にダウンサンプル/ドロップする自動データスライミングを統合し、画像の空間的複雑さによって導かれるトレーニング損失に対するそれに対応するコントリビューションを制御する。
実験と非難研究により、DANCEは効率的なセグメンテーションに向けて「オールウィン」を達成できることを示した。
論文 参考訳(メタデータ) (2021-07-16T04:58:58Z) - From DNNs to GANs: Review of efficient hardware architectures for deep
learning [0.0]
ニューラルネットワークとディープラーニングが現在の研究パラダイムに影響を与え始めている。
DSPプロセッサは、ニューラルネットワーク、アクティベーション機能、畳み込みニューラルネットワーク、生成的敵ネットワーク操作を実行することができない。
異なるアルゴリズムは、ニューラルネットワーク、アクティベーション機能、畳み込みニューラルネットワーク、生成対向ネットワークにおける高速なパフォーマンスに適合するDSPプロセッサを設計するために適合している。
論文 参考訳(メタデータ) (2021-06-06T13:23:06Z) - Benchmarking network fabrics for data distributed training of deep
neural networks [10.067102343753643]
深層モデルの訓練のための大規模な計算要求は、より高速な訓練のための新しい方法の開発を必要としている。
このようなアプローチのひとつに、トレーニングデータを複数の計算ノードに分散する、データ並列アプローチがある。
本稿では,物理ハードウェアの相互接続とネットワーク関連ソフトウェアプリミティブを用いてデータ分散ディープラーニングを実現する効果について検討する。
論文 参考訳(メタデータ) (2020-08-18T17:38:30Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
高速で低エネルギーのコンピュータは、エッジでリアルタイム人工知能を実現するために要求されている。
ワンステップ学習は、ボストンの住宅のコスト予測と、MNIST桁認識のための2層ニューラルネットワークのトレーニングによって支援される。
結果は、クロスポイントアレイ内の物理計算、並列計算、アナログ計算のおかげで、1つの計算ステップで得られる。
論文 参考訳(メタデータ) (2020-05-05T08:00:07Z) - Towards High Performance Java-based Deep Learning Frameworks [0.22940141855172028]
現代のクラウドサービスは、高速で効率的なデータ処理の需要を定めている。
この需要は、ディープラーニング、データマイニング、コンピュータビジョンなど、多くのアプリケーション領域に共通している。
本稿では、JavaベースのディープラーニングフレームワークであるDeep Nettsを透過的に高速化する最先端のプログラミングフレームワークであるTornadoVMを採用しました。
論文 参考訳(メタデータ) (2020-01-13T13:03:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。