Towards counterfactual fairness through auxiliary variables
- URL: http://arxiv.org/abs/2412.04767v3
- Date: Thu, 20 Feb 2025 18:00:33 GMT
- Title: Towards counterfactual fairness through auxiliary variables
- Authors: Bowei Tian, Ziyao Wang, Shwai He, Wanghao Ye, Guoheng Sun, Yucong Dai, Yongkai Wu, Ang Li,
- Abstract summary: We introduce EXOgenous Causal reasoning (EXOC), a novel causal reasoning framework motivated by variables.
Our framework explicitly defines an auxiliary node and a control node that contribute to counterfactual fairness.
Our evaluation, conducted on synthetic and real-world datasets, validates EXOC's superiority.
- Score: 11.756940915048713
- License:
- Abstract: The challenge of balancing fairness and predictive accuracy in machine learning models, especially when sensitive attributes such as race, gender, or age are considered, has motivated substantial research in recent years. Counterfactual fairness ensures that predictions remain consistent across counterfactual variations of sensitive attributes, which is a crucial concept in addressing societal biases. However, existing counterfactual fairness approaches usually overlook intrinsic information about sensitive features, limiting their ability to achieve fairness while simultaneously maintaining performance. To tackle this challenge, we introduce EXOgenous Causal reasoning (EXOC), a novel causal reasoning framework motivated by exogenous variables. It leverages auxiliary variables to uncover intrinsic properties that give rise to sensitive attributes. Our framework explicitly defines an auxiliary node and a control node that contribute to counterfactual fairness and control the information flow within the model. Our evaluation, conducted on synthetic and real-world datasets, validates EXOC's superiority, showing that it outperforms state-of-the-art approaches in achieving counterfactual fairness. Our code is available at https://github.com/CASE-Lab-UMD/counterfactual_fairness_2025.
Related papers
- Toward Fairer Face Recognition Datasets [69.04239222633795]
Face recognition and verification are computer vision tasks whose performance has progressed with the introduction of deep representations.
Ethical, legal, and technical challenges due to the sensitive character of face data and biases in real training datasets hinder their development.
We promote fairness by introducing a demographic attributes balancing mechanism in generated training datasets.
arXiv Detail & Related papers (2024-06-24T12:33:21Z) - What Hides behind Unfairness? Exploring Dynamics Fairness in Reinforcement Learning [52.51430732904994]
In reinforcement learning problems, agents must consider long-term fairness while maximizing returns.
Recent works have proposed many different types of fairness notions, but how unfairness arises in RL problems remains unclear.
We introduce a novel notion called dynamics fairness, which explicitly captures the inequality stemming from environmental dynamics.
arXiv Detail & Related papers (2024-04-16T22:47:59Z) - Counterfactual Fairness for Predictions using Generative Adversarial
Networks [28.65556399421874]
We develop a novel deep neural network called Generative Counterfactual Fairness Network (GCFN) for making predictions under counterfactual fairness.
Our method is mathematically guaranteed to ensure the notion of counterfactual fairness.
arXiv Detail & Related papers (2023-10-26T17:58:39Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - Learning Fair Node Representations with Graph Counterfactual Fairness [56.32231787113689]
We propose graph counterfactual fairness, which considers the biases led by the above facts.
We generate counterfactuals corresponding to perturbations on each node's and their neighbors' sensitive attributes.
Our framework outperforms the state-of-the-art baselines in graph counterfactual fairness.
arXiv Detail & Related papers (2022-01-10T21:43:44Z) - Adversarial Learning for Counterfactual Fairness [15.302633901803526]
In recent years, fairness has become an important topic in the machine learning research community.
We propose to rely on an adversarial neural learning approach, that enables more powerful inference than with MMD penalties.
Experiments show significant improvements in term of counterfactual fairness for both the discrete and the continuous settings.
arXiv Detail & Related papers (2020-08-30T09:06:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.