Adversarial Learning for Counterfactual Fairness
- URL: http://arxiv.org/abs/2008.13122v1
- Date: Sun, 30 Aug 2020 09:06:03 GMT
- Title: Adversarial Learning for Counterfactual Fairness
- Authors: Vincent Grari, Sylvain Lamprier, Marcin Detyniecki
- Abstract summary: In recent years, fairness has become an important topic in the machine learning research community.
We propose to rely on an adversarial neural learning approach, that enables more powerful inference than with MMD penalties.
Experiments show significant improvements in term of counterfactual fairness for both the discrete and the continuous settings.
- Score: 15.302633901803526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, fairness has become an important topic in the machine
learning research community. In particular, counterfactual fairness aims at
building prediction models which ensure fairness at the most individual level.
Rather than globally considering equity over the entire population, the idea is
to imagine what any individual would look like with a variation of a given
attribute of interest, such as a different gender or race for instance.
Existing approaches rely on Variational Auto-encoding of individuals, using
Maximum Mean Discrepancy (MMD) penalization to limit the statistical dependence
of inferred representations with their corresponding sensitive attributes. This
enables the simulation of counterfactual samples used for training the target
fair model, the goal being to produce similar outcomes for every alternate
version of any individual. In this work, we propose to rely on an adversarial
neural learning approach, that enables more powerful inference than with MMD
penalties, and is particularly better fitted for the continuous setting, where
values of sensitive attributes cannot be exhaustively enumerated. Experiments
show significant improvements in term of counterfactual fairness for both the
discrete and the continuous settings.
Related papers
- Fairness-enhancing mixed effects deep learning improves fairness on in- and out-of-distribution clustered (non-iid) data [6.596656267996196]
We introduce the Fair Mixed Effects Deep Learning (Fair MEDL) framework.
Fair MEDL quantifies cluster-invariant fixed effects (FE) and cluster-specific random effects (RE)
We incorporate adversarial debiasing to promote fairness across three key metrics: Equalized Odds, Demographic Parity, and Counterfactual Fairness.
arXiv Detail & Related papers (2023-10-04T20:18:45Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
We propose FairAdaBN, which makes batch normalization adaptive to sensitive attribute.
We propose a new metric, named Fairness-Accuracy Trade-off Efficiency (FATE), to compute normalized fairness improvement over accuracy drop.
Experiments on two dermatological datasets show that our proposed method outperforms other methods on fairness criteria and FATE.
arXiv Detail & Related papers (2023-03-15T02:22:07Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
It is important to guarantee that machine learning algorithms deployed in the real world do not result in unfairness or unintended social consequences.
We introduce FairCOCCO, a fairness measure built on cross-covariance operators on reproducing kernel Hilbert Spaces.
We empirically demonstrate consistent improvements against state-of-the-art techniques in balancing predictive power and fairness on real-world datasets.
arXiv Detail & Related papers (2022-11-11T11:28:46Z) - Fair Inference for Discrete Latent Variable Models [12.558187319452657]
Machine learning models, trained on data without due care, often exhibit unfair and discriminatory behavior against certain populations.
We develop a fair variational inference technique for the discrete latent variables, which is accomplished by including a fairness penalty on the variational distribution.
To demonstrate the generality of our approach and its potential for real-world impact, we then develop a special-purpose graphical model for criminal justice risk assessments.
arXiv Detail & Related papers (2022-09-15T04:54:21Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - FAIR: Fair Adversarial Instance Re-weighting [0.7829352305480285]
We propose a Fair Adrial Instance Re-weighting (FAIR) method, which uses adversarial training to learn instance weighting function that ensures fair predictions.
To the best of our knowledge, this is the first model that merges reweighting and adversarial approaches by means of a weighting function that can provide interpretable information about fairness of individual instances.
arXiv Detail & Related papers (2020-11-15T10:48:56Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
A growing specter in the rise of machine learning is whether the decisions made by machine learning models are fair.
We present a framework of fair semi-supervised learning in the pre-processing phase, including pseudo labeling to predict labels for unlabeled data.
A theoretical decomposition analysis of bias, variance and noise highlights the different sources of discrimination and the impact they have on fairness in semi-supervised learning.
arXiv Detail & Related papers (2020-09-25T05:48:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.