Megatron: Evasive Clean-Label Backdoor Attacks against Vision Transformer
- URL: http://arxiv.org/abs/2412.04776v1
- Date: Fri, 06 Dec 2024 04:39:41 GMT
- Title: Megatron: Evasive Clean-Label Backdoor Attacks against Vision Transformer
- Authors: Xueluan Gong, Bowei Tian, Meng Xue, Shuike Li, Yanjiao Chen, Qian Wang,
- Abstract summary: We propose Megatron, an evasive clean-label backdoor attack against vision transformers.
To generate an effective trigger, we customize two loss terms based on the attention mechanism used in transformer networks.
Experiments on CIFAR-10, GTSRB, CIFAR-100, and Tiny ImageNet demonstrate the effectiveness of Megatron.
- Score: 18.7577367616979
- License:
- Abstract: Vision transformers have achieved impressive performance in various vision-related tasks, but their vulnerability to backdoor attacks is under-explored. A handful of existing works focus on dirty-label attacks with wrongly-labeled poisoned training samples, which may fail if a benign model trainer corrects the labels. In this paper, we propose Megatron, an evasive clean-label backdoor attack against vision transformers, where the attacker injects the backdoor without manipulating the data-labeling process. To generate an effective trigger, we customize two loss terms based on the attention mechanism used in transformer networks, i.e., latent loss and attention diffusion loss. The latent loss aligns the last attention layer between triggered samples and clean samples of the target label. The attention diffusion loss emphasizes the attention diffusion area that encompasses the trigger. A theoretical analysis is provided to underpin the rationale behind the attention diffusion loss. Extensive experiments on CIFAR-10, GTSRB, CIFAR-100, and Tiny ImageNet demonstrate the effectiveness of Megatron. Megatron can achieve attack success rates of over 90% even when the position of the trigger is slightly shifted during testing. Furthermore, Megatron achieves better evasiveness than baselines regarding both human visual inspection and defense strategies (i.e., DBAVT, BAVT, Beatrix, TeCo, and SAGE).
Related papers
- An Effective and Resilient Backdoor Attack Framework against Deep Neural Networks and Vision Transformers [22.77836113915616]
We propose a novel attention-based mask generation methodology that searches for the optimal trigger shape and location.
We also introduce a Quality-of-Experience term into the loss function and carefully adjust the transparency value of the trigger.
Our proposed backdoor attack framework also showcases robustness against state-of-the-art backdoor defenses.
arXiv Detail & Related papers (2024-12-09T02:03:27Z) - Backdoor Attack Against Vision Transformers via Attention Gradient-Based Image Erosion [4.036142985883415]
Vision Transformers (ViTs) have outperformed traditional Convolutional Neural Networks (CNN) across various computer vision tasks.
ViTs are vulnerable to backdoor attacks, where an adversary embeds a backdoor into the victim model.
We propose an Attention Gradient-based Erosion Backdoor (AGEB) targeted at ViTs.
arXiv Detail & Related papers (2024-10-30T04:06:12Z) - DMGNN: Detecting and Mitigating Backdoor Attacks in Graph Neural Networks [30.766013737094532]
We propose DMGNN against out-of-distribution (OOD) and in-distribution (ID) graph backdoor attacks.
DMGNN can easily identify the hidden ID and OOD triggers via predicting label transitions based on counterfactual explanation.
DMGNN far outperforms the state-of-the-art (SOTA) defense methods, reducing the attack success rate to 5% with almost negligible degradation in model performance.
arXiv Detail & Related papers (2024-10-18T01:08:03Z) - ViTGuard: Attention-aware Detection against Adversarial Examples for Vision Transformer [8.71614629110101]
We propose ViTGuard as a general detection method for defending Vision Transformer (ViT) models against adversarial attacks.
ViTGuard uses a Masked Autoencoder (MAE) model to recover randomly masked patches from the unmasked regions.
threshold-based detectors leverage distinctive ViT features, including attention maps and classification (token representations) token representations, to distinguish between normal and adversarial samples.
arXiv Detail & Related papers (2024-09-20T18:11:56Z) - Any Target Can be Offense: Adversarial Example Generation via Generalized Latent Infection [83.72430401516674]
GAKer is able to construct adversarial examples to any target class.
Our method achieves an approximately $14.13%$ higher attack success rate for unknown classes.
arXiv Detail & Related papers (2024-07-17T03:24:09Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - BATT: Backdoor Attack with Transformation-based Triggers [72.61840273364311]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
Backdoor adversaries inject hidden backdoors that can be activated by adversary-specified trigger patterns.
One recent research revealed that most of the existing attacks failed in the real physical world.
arXiv Detail & Related papers (2022-11-02T16:03:43Z) - DBIA: Data-free Backdoor Injection Attack against Transformer Networks [6.969019759456717]
We propose DBIA, a data-free backdoor attack against the CV-oriented transformer networks.
Our approach can embed backdoors with a high success rate and a low impact on the performance of the victim transformers.
arXiv Detail & Related papers (2021-11-22T08:13:51Z) - Towards Transferable Adversarial Attacks on Vision Transformers [110.55845478440807]
Vision transformers (ViTs) have demonstrated impressive performance on a series of computer vision tasks, yet they still suffer from adversarial examples.
We introduce a dual attack framework, which contains a Pay No Attention (PNA) attack and a PatchOut attack, to improve the transferability of adversarial samples across different ViTs.
arXiv Detail & Related papers (2021-09-09T11:28:25Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
The emphbackdoor attack intends to embed hidden backdoors in deep neural networks (DNNs) by poisoning training data.
We propose a novel attack paradigm, the emphfine-grained attack, where we treat the target label from the object-level instead of the image-level.
Experiments show that the proposed methods can successfully attack semantic segmentation models by poisoning only a small proportion of training data.
arXiv Detail & Related papers (2021-03-06T05:50:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.