Estimating the treatment effect over time under general interference through deep learner integrated TMLE
- URL: http://arxiv.org/abs/2412.04799v1
- Date: Fri, 06 Dec 2024 06:09:43 GMT
- Title: Estimating the treatment effect over time under general interference through deep learner integrated TMLE
- Authors: Suhan Guo, Furao Shen, Ni Li,
- Abstract summary: We introduce DeepNetTMLE, a deep-learning-enhanced Targeted Maximum Likelihood Estimation (TMLE) method.
DeepNetTMLE mitigates bias from time-varying confounders under general interference.
We show that DeepNetTMLE achieves lower bias and more precise confidence intervals in counterfactual estimates.
- Score: 7.2615408834692685
- License:
- Abstract: Understanding the effects of quarantine policies in populations with underlying social networks is crucial for public health, yet most causal inference methods fail here due to their assumption of independent individuals. We introduce DeepNetTMLE, a deep-learning-enhanced Targeted Maximum Likelihood Estimation (TMLE) method designed to estimate time-sensitive treatment effects in observational data. DeepNetTMLE mitigates bias from time-varying confounders under general interference by incorporating a temporal module and domain adversarial training to build intervention-invariant representations. This process removes associations between current treatments and historical variables, while the targeting step maintains the bias-variance trade-off, enhancing the reliability of counterfactual predictions. Using simulations of a ``Susceptible-Infected-Recovered'' model with varied quarantine coverages, we show that DeepNetTMLE achieves lower bias and more precise confidence intervals in counterfactual estimates, enabling optimal quarantine recommendations within budget constraints, surpassing state-of-the-art methods.
Related papers
- In-Context Parametric Inference: Point or Distribution Estimators? [66.22308335324239]
We show that amortized point estimators generally outperform posterior inference, though the latter remain competitive in some low-dimensional problems.
Our experiments indicate that amortized point estimators generally outperform posterior inference, though the latter remain competitive in some low-dimensional problems.
arXiv Detail & Related papers (2025-02-17T10:00:24Z) - Conformal Diffusion Models for Individual Treatment Effect Estimation and Inference [6.406853903837333]
Individual treatment effect offers the most granular measure of treatment effect on an individual level.
We propose a novel conformal diffusion model-based approach that addresses those intricate challenges.
arXiv Detail & Related papers (2024-08-02T21:35:08Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Non-Asymptotic Uncertainty Quantification in High-Dimensional Learning [5.318766629972959]
Uncertainty quantification is a crucial but challenging task in many high-dimensional regression or learning problems.
We develop a new data-driven approach for UQ in regression that applies both to classical regression approaches as well as to neural networks.
arXiv Detail & Related papers (2024-07-18T16:42:10Z) - Causal Contrastive Learning for Counterfactual Regression Over Time [3.3523758554338734]
This paper introduces a unique approach to counterfactual regression over time, emphasizing long-term predictions.
Distinguishing itself from existing models like Causal Transformer, our approach highlights the efficacy of employing RNNs for long-term forecasting.
Our method achieves state-of-the-art counterfactual estimation results using both synthetic and real-world data.
arXiv Detail & Related papers (2024-06-01T19:07:25Z) - Longitudinal Targeted Minimum Loss-based Estimation with Temporal-Difference Heterogeneous Transformer [7.451436112917229]
We propose a novel approach to estimate the counterfactual mean of outcome under dynamic treatment policies in longitudinal problem settings.
Our approach utilizes a transformer architecture with heterogeneous type embedding trained using temporal-difference learning.
Our method also facilitates statistical inference by enabling the provision of 95% confidence intervals grounded in statistical theory.
arXiv Detail & Related papers (2024-04-05T20:56:15Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - Deep Bayesian Estimation for Dynamic Treatment Regimes with a Long
Follow-up Time [28.11470886127216]
Causal effect estimation for dynamic treatment regimes (DTRs) contributes to sequential decision making.
We combine outcome regression models with treatment models for high dimensional features using uncensored subjects that are small in sample size.
Also, the developed deep Bayesian models can model uncertainty and output the prediction variance which is essential for the safety-aware applications, such as self-driving cars and medical treatment design.
arXiv Detail & Related papers (2021-09-20T13:21:39Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - CoinDICE: Off-Policy Confidence Interval Estimation [107.86876722777535]
We study high-confidence behavior-agnostic off-policy evaluation in reinforcement learning.
We show in a variety of benchmarks that the confidence interval estimates are tighter and more accurate than existing methods.
arXiv Detail & Related papers (2020-10-22T12:39:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.