Light-induced magnetic trapping for cold alkali atoms using a combined optical tweezers and nanofibre platform
- URL: http://arxiv.org/abs/2412.04809v3
- Date: Tue, 10 Dec 2024 13:24:51 GMT
- Title: Light-induced magnetic trapping for cold alkali atoms using a combined optical tweezers and nanofibre platform
- Authors: Alexey Vylegzhanin, Dylan J. Brown, Sergey Abdrakhmanov, Sile Nic Chormaic,
- Abstract summary: We present a magnetic trapping method for cold $87$Rb atoms using light-induced magnetic fields from an optical nanofibre.
We plot and plot the trapping potentials for both Gaussian and Laguerre-Gaussian modes of the optical tweezers.
We show that, by controlling the powers in both of the optical fields, one can vary the trap position over a few hundreds of nanometres.
- Score: 0.0
- License:
- Abstract: We present a magnetic trapping method for cold $^{87}$Rb atoms, utilising the light-induced magnetic fields from the evanescent field of an optical nanofibre (ONF) in conjunction with an optical tweezers. We calculate and plot the trapping potentials for both Gaussian and Laguerre-Gaussian modes of the optical tweezers, and quasi-linear polarisation of the ONF-guided field. Based on the optical powers in the tweezers beam and the ONF-guided mode, we analyse the trap depths and the distances of the trap minima from the surface of the nanofibre. We show that, by controlling the powers in both of the optical fields, one can vary the trap position over a few hundreds of nanometres, while also influencing the trap depth and trap frequencies. Such control over atom position is essential both for studying distance-dependent effects on atoms trapped near dielectric surfaces, and minimising these effects for quantum technology applications.
Related papers
- A New Bite Into Dark Matter with the SNSPD-Based QROCODILE Experiment [55.46105000075592]
We present the first results from the Quantum Resolution-d Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE)
The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption.
We report new world-leading constraints on the interactions of sub-MeV dark matter particles with masses as low as 30 keV.
arXiv Detail & Related papers (2024-12-20T19:00:00Z) - Spin Squeezing with Magnetic Dipoles [37.93140485169168]
Entanglement can improve the measurement precision of quantum sensors beyond the shot noise limit.
We take advantage of the magnetic dipole-dipole interaction native to most neutral atoms to realize spin-squeezed states.
We achieve 7.1 dB of metrologically useful squeezing using the finite-range spin exchange interactions in an erbium quantum gas microscope.
arXiv Detail & Related papers (2024-11-11T18:42:13Z) - Multifunctional metalens for trapping and characterizing single atoms [15.034733815125822]
We demonstrate a multifunctional metalens that integrates an achromatic lens with large numerical aperture, a quarter-wave plate, and a polarizer.
The metalens simultaneously focuses a trapping beam at 852,nm and collects single-photon fluorescence at 780,nm.
Our work showcases the potential of metasurfaces in realizing compact and integrated quantum systems based on cold atoms, opening up new possibilities for studying quantum control and manipulation at the nanoscale.
arXiv Detail & Related papers (2024-11-08T12:02:38Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Quantum Sensing with Scanning Near-Field Optical Photons Scattered by an
Atomic-Force Microscope Tip [0.0]
Scattering scanning near-field optical microscopy (s-SNOM) is known as a promising technique for overcoming Abbe diffraction limit.
We propose a quantum model for the suggested system, by employing electric-dipole approximation, image theory, and perturbation theory.
Our proposed scheme can be used for quantum imaging or quantum spectroscopy with high resolution.
arXiv Detail & Related papers (2022-12-09T05:53:51Z) - Levitated Optomechanics with Meta-Atoms [0.0]
We introduce additional control in levitated optomechanics by trapping a meta-atom supporting Mie resonances.
We show that optical levitation and center-of-mass ground-state cooling of silicon nanoparticles in vacuum is not only experimentally feasible but it offers enhanced performance.
arXiv Detail & Related papers (2022-11-15T15:50:51Z) - State-Insensitive Trapping of Alkaline-Earth Atoms in a Nanofiber-Based
Optical Dipole Trap [0.0]
We demonstrate a state-insensitive optical dipole trap for strontium-88, an alkaline-earth atom, using the evanescent fields of a nanotapered optical fiber.
This work also lays the foundation for developing versatile and robust matter-wave atomtronic circuits over nanophotonic waveguides.
arXiv Detail & Related papers (2022-11-08T04:54:50Z) - Magnetic-field-induced cavity protection for intersubband polaritons [52.77024349608834]
We analyse the effect of a strong perpendicular magnetic field on an intersubband transition in a disordered doped quantum well strongly coupled to an optical cavity.
The magnetic field changes the lineshape of the intersubband optical transition due to the roughness of the interface of the quantum well from a Lorentzian to a Gaussian one.
arXiv Detail & Related papers (2022-10-14T18:00:03Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Coupling of Light and Mechanics in a Photonic Crystal Waveguide [0.0]
Thermally driven transverse vibration of a photonic crystal waveguide (PCW) is observed.
Long term goals are to achieve strong atom-mediated links between individual phonons of vibration and single photons propagating in the guided mode of the PCW.
arXiv Detail & Related papers (2020-07-25T10:06:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.