Coupling of Light and Mechanics in a Photonic Crystal Waveguide
- URL: http://arxiv.org/abs/2007.12900v1
- Date: Sat, 25 Jul 2020 10:06:57 GMT
- Title: Coupling of Light and Mechanics in a Photonic Crystal Waveguide
- Authors: J.-B. B\'eguin (1), Z. Qin (1 and 2), X. Luan (1), H. J. Kimble (1)
((1) Norman Bridge Laboratory of Physics MC12-33, California Institute of
Technology, Pasadena, CA 91125, USA, (2) State Key Laboratory of Quantum
Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi
University, Taiyuan 030006, China)
- Abstract summary: Thermally driven transverse vibration of a photonic crystal waveguide (PCW) is observed.
Long term goals are to achieve strong atom-mediated links between individual phonons of vibration and single photons propagating in the guided mode of the PCW.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Observations of thermally driven transverse vibration of a photonic crystal
waveguide (PCW) are reported. The PCW consists of two parallel nanobeams with a
240 nm vacuum gap between the beams. Models are developed and validated for the
transduction of beam motion to phase and amplitude modulation of a weak optical
probe propagating in a guided mode (GM) of the PCW for probe frequencies far
from and near to the dielectric band edge. Since our PCW has been designed for
near-field atom trapping, this research provides a foundation for evaluating
possible deleterious effects of thermal motion on optical atomic traps near the
surfaces of PCWs. Longer term goals are to achieve strong atom-mediated links
between individual phonons of vibration and single photons propagating in the
GMs of the PCW, thereby enabling opto-mechanics at the quantum level with
atoms, photons, and phonons. The experiments and models reported here provide a
basis for assessing such goals, including sensing mechanical motion at the
Standard Quantum Limit (SQL).
Related papers
- Tunable photon scattering by an atom dimer coupled to a band edge of a photonic crystal waveguide [0.0]
Quantum emitters trapped near photonic crystal waveguides have emerged as an exciting platform for realizing novel quantum matter-light interfaces.
We study tunable photon scattering in a photonic crystal waveguide coupled to an atom dimer with an arbitrary spatial separation.
arXiv Detail & Related papers (2024-09-30T13:57:58Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Large Single-Phonon Optomechanical Coupling between Quantum Dots and
Tightly Confined Surface Acoustic Waves in the Quantum Regime [1.7039969990048311]
Small acoustic cavities with large zero-point motion are required for high efficiencies.
We experimentally establish the feasibility of this platform through electro- and opto-mechanical characterization.
We show conversion between microwave phonons and optical photons with sub-natural linewidths.
arXiv Detail & Related papers (2022-05-03T02:53:01Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Cavity Quantum Electrodynamics Design with Single Photon Emitters in
Hexagonal Boron Nitride [6.352389759470726]
We numerically investigate the cavity quantum electrodynamics (cavity-QED) scheme incorporating defect-enabled single photon emitters in h-BN microdisk resonators.
The whispering-gallery nature of microdisks can support multiple families of cavity resonances with different radial and azimuthal mode indices simultaneously.
This study contributes toward realizing h-BN photonic components, such as low-threshold microcavity lasers and high-purity single photon sources.
arXiv Detail & Related papers (2021-06-05T21:53:44Z) - Spontaneous Parametric Down-Conversion from Resonant Metasurfaces [0.0]
We demonstrate first-time generation of photon pairs via spontaneous parametric-down conversion in lithium niobate quantum optical metasurfaces.
By engineering the quantum optical metasurface, we tailor the photon-pair spectrum in a controlled way.
arXiv Detail & Related papers (2021-03-15T16:47:44Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum coherent microwave-optical transduction using high overtone bulk
acoustic resonances [6.467198007912785]
A device capable of converting single quanta of the microwave field to the optical domain is an outstanding endeavour.
We present a new transduction scheme that could satisfy the requirements for quantum coherent bidirectional transduction.
Our scheme relies on an intermediary mechanical mode, a high overtone bulk acoustic resonance (HBAR), to coherently couple microwave and optical photons.
arXiv Detail & Related papers (2021-02-28T11:45:37Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.