論文の概要: Automatic Prediction of Stroke Treatment Outcomes: Latest Advances and Perspectives
- arxiv url: http://arxiv.org/abs/2412.04812v1
- Date: Fri, 06 Dec 2024 07:06:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:55:26.239673
- Title: Automatic Prediction of Stroke Treatment Outcomes: Latest Advances and Perspectives
- Title(参考訳): ストローク治療結果の自動予測 : 最新の進歩と展望
- Authors: Zeynel A. Samak, Philip Clatworthy, Majid Mirmehdi,
- Abstract要約: ディープラーニング技術の導入と開発は、大規模で多様な医療データを分析するのに役立ちます。
医用画像分析領域における共通データ標準化の課題にもかかわらず、脳卒中結果予測におけるディープラーニングの未来は、マルチモーダル情報を使うことにある。
このレビューは、研究者、臨床医、政策立案者に対して、この急速に発展し、有望な分野に関する最新の理解を提供することを目的としている。
- 参考スコア(独自算出の注目度): 3.7570334364848073
- License:
- Abstract: Stroke is a major global health problem that causes mortality and morbidity. Predicting the outcomes of stroke intervention can facilitate clinical decision-making and improve patient care. Engaging and developing deep learning techniques can help to analyse large and diverse medical data, including brain scans, medical reports and other sensor information, such as EEG, ECG, EMG and so on. Despite the common data standardisation challenge within medical image analysis domain, the future of deep learning in stroke outcome prediction lie in using multimodal information, including final infarct data, to achieve better prediction of long-term functional outcomes. This article provides a broad review of recent advances and applications of deep learning in the prediction of stroke outcomes, including (i) the data and models used, (ii) the prediction tasks and measures of success, (iii) the current challenges and limitations, and (iv) future directions and potential benefits. This comprehensive review aims to provide researchers, clinicians, and policy makers with an up-to-date understanding of this rapidly evolving and promising field.
- Abstract(参考訳): ストロークは、死亡率と死亡率を引き起こす主要な世界的な健康問題である。
脳卒中介入の結果を予測することは、臨床的意思決定を促進し、患者のケアを改善する。
深層学習技術の導入と開発は、脳スキャン、医療報告、EEG、ECG、EMGなどのセンサー情報など、大規模で多様な医療データを分析するのに役立ちます。
医用画像解析領域における共通データ標準化の課題にもかかわらず、脳卒中結果予測における深層学習の将来は、最終梗塞データを含むマルチモーダル情報を用いて、長期的機能的結果のより良い予測を達成することにある。
本稿では,脳卒中発症予測におけるディープラーニングの最近の進歩と応用について概観する。
(i)使用するデータ及びモデル
二 成功の予測課題及び措置
(三)現在の課題、限界、及び
(4)今後の方向性と潜在的な利益。
この総合的なレビューは、研究者、臨床医、政策立案者に対して、この急速に発展し、有望な分野に関する最新の理解を提供することを目的としている。
関連論文リスト
- Artificial Intelligence for Infectious Disease Prediction and Prevention: A Comprehensive Review [1.4874449172133888]
この論文は、AIの可能性を批判的に評価し、感染症管理の限界について概説する。
地域内の伝染病の拡散を防ぐための公衆衛生データを用いた予測、患者が感染性疾患に罹患しているかどうかを検出するための患者の医療データを用いた予測、公共医療データと患者医療データを用いて人口内で拡散している病気の程度を推定する予測の3つの分野に分類する。
論文 参考訳(メタデータ) (2024-11-14T00:43:32Z) - Deciphering Cardiac Destiny: Unveiling Future Risks Through Cutting-Edge Machine Learning Approaches [0.0]
本研究の目的は,心停止事故のタイムリー同定のための予測モデルの開発と評価である。
我々は、XGBoost、Gradient Boosting、Naive Bayesといった機械学習アルゴリズムと、リカレントニューラルネットワーク(RNN)によるディープラーニング(DL)アプローチを採用しています。
厳密な実験と検証により,RNNモデルの優れた性能が示された。
論文 参考訳(メタデータ) (2024-09-03T19:18:16Z) - Machine Learning Applications in Medical Prognostics: A Comprehensive Review [0.0]
機械学習(ML)は、高度なアルゴリズムと臨床データを統合することで、医学的診断に革命をもたらした。
RFモデルは高次元データの処理において堅牢な性能を示す。
CNNは、がん検出において異常な精度を示している。
LSTMネットワークは、時間的データの解析に優れ、臨床劣化の正確な予測を提供する。
論文 参考訳(メタデータ) (2024-08-05T09:41:34Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
がんを研究・治療するための計算予測モデルをエクスプロイトすることは、薬物開発の改善と治療計画のパーソナライズドデザインにおいて大きな可能性を秘めている。
最近の研究の波は、ディープラーニング手法を用いて、薬物治療に対するがん反応を予測するという有望な結果を示している。
このレビューは、この分野の現状をよりよく理解し、主要な課題と将来性のあるソリューションパスを特定します。
論文 参考訳(メタデータ) (2022-11-18T03:26:31Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
論文 参考訳(メタデータ) (2022-07-19T16:15:11Z) - Computer-aided diagnosis and prediction in brain disorders [4.1952343579390226]
コンピュータ支援手法は、脳疾患の診断と予測に付加価値を示す。
この章では、メソッドの種類、動作方法、入力データ、それらが提供する出力の種類について、洞察を提供する。
論文 参考訳(メタデータ) (2022-06-29T14:39:08Z) - Predicting infections in the Covid-19 pandemic -- lessons learned [5.981641988736108]
本稿では,XPrize Pandemic Response Challengeのために提案された予測アルゴリズムから始める。
モデル化された地域の文化に関する付加的な情報でアルゴリズムを増強することで、短期予測の性能を向上させることができることがわかった。
中期予測の精度は依然として低く、そのようなモデルを公共政策ツールボックスの信頼性の高いコンポーネントにするためには、かなりの量の将来の研究が必要である。
論文 参考訳(メタデータ) (2021-12-02T20:20:46Z) - HINT: Hierarchical Interaction Network for Trial Outcome Prediction
Leveraging Web Data [56.53715632642495]
臨床試験は、有効性、安全性、または患者採用の問題により、不確実な結果に直面する。
本稿では,より一般的な臨床試験結果予測のための階層型Interaction Network(HINT)を提案する。
論文 参考訳(メタデータ) (2021-02-08T15:09:07Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。