WRF-GS: Wireless Radiation Field Reconstruction with 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2412.04832v1
- Date: Fri, 06 Dec 2024 07:56:14 GMT
- Title: WRF-GS: Wireless Radiation Field Reconstruction with 3D Gaussian Splatting
- Authors: Chaozheng Wen, Jingwen Tong, Yingdong Hu, Zehong Lin, Jun Zhang,
- Abstract summary: We present WRF-GS, a novel framework for channel modeling based on wireless radiation field (WRF) reconstruction using 3D Gaussian splatting.<n>With a small number of measurements, WRF-GS can synthesize new spatial spectra within milliseconds for a given scene.<n>WRF-GS achieves superior performance in the channel state information prediction task, surpassing existing methods by a significant margin of more than 2.43 dB.
- Score: 8.644949917126755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wireless channel modeling plays a pivotal role in designing, analyzing, and optimizing wireless communication systems. Nevertheless, developing an effective channel modeling approach has been a longstanding challenge. This issue has been escalated due to the denser network deployment, larger antenna arrays, and wider bandwidth in 5G and beyond networks. To address this challenge, we put forth WRF-GS, a novel framework for channel modeling based on wireless radiation field (WRF) reconstruction using 3D Gaussian splatting. WRF-GS employs 3D Gaussian primitives and neural networks to capture the interactions between the environment and radio signals, enabling efficient WRF reconstruction and visualization of the propagation characteristics. The reconstructed WRF can then be used to synthesize the spatial spectrum for comprehensive wireless channel characterization. Notably, with a small number of measurements, WRF-GS can synthesize new spatial spectra within milliseconds for a given scene, thereby enabling latency-sensitive applications. Experimental results demonstrate that WRF-GS outperforms existing methods for spatial spectrum synthesis, such as ray tracing and other deep-learning approaches. Moreover, WRF-GS achieves superior performance in the channel state information prediction task, surpassing existing methods by a significant margin of more than 2.43 dB.
Related papers
- GWRF: A Generalizable Wireless Radiance Field for Wireless Signal Propagation Modeling [5.744904421002954]
Generalizable Wireless Radiance Fields (GWRF) is a framework for modeling wireless signal propagation at arbitrary 3D transmitter and receiver positions.
First, a geometry-aware Transformer encoder-based wireless scene representation module incorporates information from geographically proximate transmitters to learn a generalizable wireless radiance field.
Second, a neural-driven ray tracing algorithm operates on this field to automatically compute signal reception at the receiver.
arXiv Detail & Related papers (2025-02-08T22:03:08Z) - Rydberg Atomic Quantum Receivers for Classical Wireless Communications and Sensing: Their Models and Performance [78.76421728334013]
Rydberg atomic quantum receivers (RAQRs) are an eminent solution for detecting the electric field of radio frequency (RF) signals.
We introduce the superheterodyne version of RAQRs to the wireless community by presenting an end-to-end reception scheme.
We then develop a corresponding equivalent baseband signal model relying on a realistic reception flow.
arXiv Detail & Related papers (2024-12-07T06:25:54Z) - RayProNet: A Neural Point Field Framework for Radio Propagation Modeling in 3D Environments [1.7074276434401858]
We introduce a novel machine learning-empowered methodology for wireless channel modeling.
Key ingredients include a point-cloud-based neural network and a Spherical Harmonics encoder with light probes.
arXiv Detail & Related papers (2024-06-04T01:06:41Z) - NeRF-DetS: Enhancing Multi-View 3D Object Detection with Sampling-adaptive Network of Continuous NeRF-based Representation [60.47114985993196]
NeRF-Det unifies the tasks of novel view arithmetic and 3D perception.
We introduce a novel 3D perception network structure, NeRF-DetS.
NeRF-DetS outperforms competitive NeRF-Det on the ScanNetV2 dataset.
arXiv Detail & Related papers (2024-04-22T06:59:03Z) - RF-Diffusion: Radio Signal Generation via Time-Frequency Diffusion [15.175370227353406]
We introduce a novel Time-Frequency Diffusion theory to enhance the original diffusion model, enabling it to tap into the information within the time, frequency, and complex-valued domains of RF signals.
RF-Diffusion is a versatile solution to generate diverse, high-quality, and time-series RF data.
We also showcase the versatility of RF-Diffusion in boosting Wi-Fi sensing systems and performing channel estimation in 5G networks.
arXiv Detail & Related papers (2024-04-14T04:56:05Z) - Prompt2NeRF-PIL: Fast NeRF Generation via Pretrained Implicit Latent [61.56387277538849]
This paper explores promptable NeRF generation for direct conditioning and fast generation of NeRF parameters for the underlying 3D scenes.
Prompt2NeRF-PIL is capable of generating a variety of 3D objects with a single forward pass.
We will show that our approach speeds up the text-to-NeRF model DreamFusion and the 3D reconstruction speed of the image-to-NeRF method Zero-1-to-3 by 3 to 5 times.
arXiv Detail & Related papers (2023-12-05T08:32:46Z) - NeuRBF: A Neural Fields Representation with Adaptive Radial Basis
Functions [93.02515761070201]
We present a novel type of neural fields that uses general radial bases for signal representation.
Our method builds upon general radial bases with flexible kernel position and shape, which have higher spatial adaptivity and can more closely fit target signals.
When applied to neural radiance field reconstruction, our method achieves state-of-the-art rendering quality, with small model size and comparable training speed.
arXiv Detail & Related papers (2023-09-27T06:32:05Z) - ResFields: Residual Neural Fields for Spatiotemporal Signals [61.44420761752655]
ResFields is a novel class of networks specifically designed to effectively represent complex temporal signals.
We conduct comprehensive analysis of the properties of ResFields and propose a matrix factorization technique to reduce the number of trainable parameters.
We demonstrate the practical utility of ResFields by showcasing its effectiveness in capturing dynamic 3D scenes from sparse RGBD cameras.
arXiv Detail & Related papers (2023-09-06T16:59:36Z) - Radio Generation Using Generative Adversarial Networks with An Unrolled
Design [18.049453261384013]
We develop a novel GAN framework for radio generation called "Radio GAN"
The first is learning based on sampling points, which aims to model an underlying sampling distribution of radio signals.
The second is an unrolled generator design, combined with an estimated pure signal distribution as a prior, which can greatly reduce learning difficulty.
arXiv Detail & Related papers (2023-06-24T07:47:22Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs) has transformed 3D-aware generation from single-view images.
We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations.
arXiv Detail & Related papers (2023-03-22T18:59:48Z) - Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level
Physically-Grounded Augmentations [111.08941206369508]
We propose Augmented NeRF (Aug-NeRF), which for the first time brings the power of robust data augmentations into regularizing the NeRF training.
Our proposal learns to seamlessly blend worst-case perturbations into three distinct levels of the NeRF pipeline.
Aug-NeRF effectively boosts NeRF performance in both novel view synthesis and underlying geometry reconstruction.
arXiv Detail & Related papers (2022-07-04T02:27:07Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
Future communication networks must address the scarce spectrum to accommodate growth of heterogeneous wireless devices.
We exploit the potential of deep neural networks based multi-task learning framework to simultaneously learn modulation and signal classification tasks.
We provide a comprehensive heterogeneous wireless signals dataset for public use.
arXiv Detail & Related papers (2022-02-26T14:51:02Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - Deep Neural Network Feature Designs for RF Data-Driven Wireless Device
Classification [9.05607520128194]
We present novel feature design approaches that exploit the distinct structures of the RF communication signals and the spectrum emissions caused by transmitter hardware impairments.
Our proposed DNN feature designs substantially improve classification robustness in terms of scalability, accuracy, signature anti-cloning, and insensitivity to environment perturbations.
arXiv Detail & Related papers (2021-03-02T20:19:05Z) - A Big Data Enabled Channel Model for 5G Wireless Communication Systems [71.93009775340234]
This paper investigates various applications of big data analytics, especially machine learning algorithms in wireless communications and channel modeling.
We propose a big data and machine learning enabled wireless channel model framework.
The proposed channel model is based on artificial neural networks (ANNs), including feed-forward neural network (FNN) and radial basis function neural network (RBF-NN)
arXiv Detail & Related papers (2020-02-28T05:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.