WRF-GS: Wireless Radiation Field Reconstruction with 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2412.04832v2
- Date: Wed, 19 Feb 2025 02:13:32 GMT
- Title: WRF-GS: Wireless Radiation Field Reconstruction with 3D Gaussian Splatting
- Authors: Chaozheng Wen, Jingwen Tong, Yingdong Hu, Zehong Lin, Jun Zhang,
- Abstract summary: We present WRF-GS, a novel framework for channel modeling based on wireless radiation field (WRF) reconstruction using 3D Gaussian splatting.
With a small number of measurements, WRF-GS can synthesize new spatial spectra within milliseconds for a given scene.
WRF-GS achieves superior performance in the channel state information prediction task, surpassing existing methods by a significant margin of more than 2.43 dB.
- Score: 8.644949917126755
- License:
- Abstract: Wireless channel modeling plays a pivotal role in designing, analyzing, and optimizing wireless communication systems. Nevertheless, developing an effective channel modeling approach has been a longstanding challenge. This issue has been escalated due to the denser network deployment, larger antenna arrays, and wider bandwidth in 5G and beyond networks. To address this challenge, we put forth WRF-GS, a novel framework for channel modeling based on wireless radiation field (WRF) reconstruction using 3D Gaussian splatting. WRF-GS employs 3D Gaussian primitives and neural networks to capture the interactions between the environment and radio signals, enabling efficient WRF reconstruction and visualization of the propagation characteristics. The reconstructed WRF can then be used to synthesize the spatial spectrum for comprehensive wireless channel characterization. Notably, with a small number of measurements, WRF-GS can synthesize new spatial spectra within milliseconds for a given scene, thereby enabling latency-sensitive applications. Experimental results demonstrate that WRF-GS outperforms existing methods for spatial spectrum synthesis, such as ray tracing and other deep-learning approaches. Moreover, WRF-GS achieves superior performance in the channel state information prediction task, surpassing existing methods by a significant margin of more than 2.43 dB.
Related papers
- GWRF: A Generalizable Wireless Radiance Field for Wireless Signal Propagation Modeling [5.744904421002954]
Generalizable Wireless Radiance Fields (GWRF) is a framework for modeling wireless signal propagation at arbitrary 3D transmitter and receiver positions.
First, a geometry-aware Transformer encoder-based wireless scene representation module incorporates information from geographically proximate transmitters to learn a generalizable wireless radiance field.
Second, a neural-driven ray tracing algorithm operates on this field to automatically compute signal reception at the receiver.
arXiv Detail & Related papers (2025-02-08T22:03:08Z) - Rydberg Atomic Quantum Receivers for Classical Wireless Communications and Sensing: Their Models and Performance [78.76421728334013]
Rydberg atomic quantum receivers (RAQRs) are an eminent solution for detecting the electric field of radio frequency (RF) signals.
We introduce the superheterodyne version of RAQRs to the wireless community by presenting an end-to-end reception scheme.
We then develop a corresponding equivalent baseband signal model relying on a realistic reception flow.
arXiv Detail & Related papers (2024-12-07T06:25:54Z) - RF-Diffusion: Radio Signal Generation via Time-Frequency Diffusion [15.175370227353406]
We introduce a novel Time-Frequency Diffusion theory to enhance the original diffusion model, enabling it to tap into the information within the time, frequency, and complex-valued domains of RF signals.
RF-Diffusion is a versatile solution to generate diverse, high-quality, and time-series RF data.
We also showcase the versatility of RF-Diffusion in boosting Wi-Fi sensing systems and performing channel estimation in 5G networks.
arXiv Detail & Related papers (2024-04-14T04:56:05Z) - Prompt2NeRF-PIL: Fast NeRF Generation via Pretrained Implicit Latent [61.56387277538849]
This paper explores promptable NeRF generation for direct conditioning and fast generation of NeRF parameters for the underlying 3D scenes.
Prompt2NeRF-PIL is capable of generating a variety of 3D objects with a single forward pass.
We will show that our approach speeds up the text-to-NeRF model DreamFusion and the 3D reconstruction speed of the image-to-NeRF method Zero-1-to-3 by 3 to 5 times.
arXiv Detail & Related papers (2023-12-05T08:32:46Z) - NeuRBF: A Neural Fields Representation with Adaptive Radial Basis
Functions [93.02515761070201]
We present a novel type of neural fields that uses general radial bases for signal representation.
Our method builds upon general radial bases with flexible kernel position and shape, which have higher spatial adaptivity and can more closely fit target signals.
When applied to neural radiance field reconstruction, our method achieves state-of-the-art rendering quality, with small model size and comparable training speed.
arXiv Detail & Related papers (2023-09-27T06:32:05Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
Future communication networks must address the scarce spectrum to accommodate growth of heterogeneous wireless devices.
We exploit the potential of deep neural networks based multi-task learning framework to simultaneously learn modulation and signal classification tasks.
We provide a comprehensive heterogeneous wireless signals dataset for public use.
arXiv Detail & Related papers (2022-02-26T14:51:02Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - Deep Neural Network Feature Designs for RF Data-Driven Wireless Device
Classification [9.05607520128194]
We present novel feature design approaches that exploit the distinct structures of the RF communication signals and the spectrum emissions caused by transmitter hardware impairments.
Our proposed DNN feature designs substantially improve classification robustness in terms of scalability, accuracy, signature anti-cloning, and insensitivity to environment perturbations.
arXiv Detail & Related papers (2021-03-02T20:19:05Z) - A Big Data Enabled Channel Model for 5G Wireless Communication Systems [71.93009775340234]
This paper investigates various applications of big data analytics, especially machine learning algorithms in wireless communications and channel modeling.
We propose a big data and machine learning enabled wireless channel model framework.
The proposed channel model is based on artificial neural networks (ANNs), including feed-forward neural network (FNN) and radial basis function neural network (RBF-NN)
arXiv Detail & Related papers (2020-02-28T05:56:14Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.