論文の概要: NebulaFL: Effective Asynchronous Federated Learning for JointCloud Computing
- arxiv url: http://arxiv.org/abs/2412.04868v1
- Date: Fri, 06 Dec 2024 09:02:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:55:16.438272
- Title: NebulaFL: Effective Asynchronous Federated Learning for JointCloud Computing
- Title(参考訳): NebulaFL: ジョイントクラウドコンピューティングのための効果的な非同期フェデレーション学習
- Authors: Fei Gao, Ming Hu, Zhiyu Xie, Peichang Shi, Xiaofei Xie, Guodong Yi, Huaimin Wang,
- Abstract要約: 本稿では,複数クラウド間の協調モデルトレーニングのための非同期FL手法NebulaFLを提案する。
実験の結果、最先端のFL法と比較して、NebulaFLは最大5.71%の精度向上を達成できることがわかった。
- 参考スコア(独自算出の注目度): 21.902246133851506
- License:
- Abstract: With advancements in AI infrastructure and Trusted Execution Environment (TEE) technology, Federated Learning as a Service (FLaaS) through JointCloud Computing (JCC) is promising to break through the resource constraints caused by heterogeneous edge devices in the traditional Federated Learning (FL) paradigm. Specifically, with the protection from TEE, data owners can achieve efficient model training with high-performance AI services in the cloud. By providing additional FL services, cloud service providers can achieve collaborative learning among data owners. However, FLaaS still faces three challenges, i.e., i) low training performance caused by heterogeneous data among data owners, ii) high communication overhead among different clouds (i.e., data centers), and iii) lack of efficient resource scheduling strategies to balance training time and cost. To address these challenges, this paper presents a novel asynchronous FL approach named NebulaFL for collaborative model training among multiple clouds. To address data heterogeneity issues, NebulaFL adopts a version control-based asynchronous FL training scheme in each data center to balance training time among data owners. To reduce communication overhead, NebulaFL adopts a decentralized model rotation mechanism to achieve effective knowledge sharing among data centers. To balance training time and cost, NebulaFL integrates a reward-guided strategy for data owners selection and resource scheduling. The experimental results demonstrate that, compared to the state-of-the-art FL methods, NebulaFL can achieve up to 5.71\% accuracy improvement. In addition, NebulaFL can reduce up to 50% communication overhead and 61.94% costs under a target accuracy.
- Abstract(参考訳): AIインフラストラクチャとTrusted Execution Environment(TEE)技術の発展により、Federated Learning as a Service(FLaaS)は、JointCloud Computing(JCC)を通じて、従来のFederated Learning(FL)パラダイムにおける異種エッジデバイスによるリソース制約を突破することを約束している。
具体的には、TEEから保護されたデータ所有者は、クラウド内の高性能AIサービスによる効率的なモデルトレーニングを実現できる。
追加のFLサービスを提供することで、クラウドサービスプロバイダはデータ所有者間の協調的な学習を実現できる。
しかし、FLaaSは依然として3つの課題に直面している。
一 データ所有者の不均質なデータによる低い訓練成績
二 異なるクラウド(データセンター)間の通信のオーバーヘッドが高いこと。
三 訓練時間及び費用のバランスをとるための効率的な資源スケジューリング戦略がないこと。
これらの課題に対処するために,複数クラウド間の協調モデルトレーニングのためのNebulaFLという新しい非同期FLアプローチを提案する。
データの不均一性問題に対処するため、NebulaFLはバージョンコントロールベースの非同期FLトレーニングスキームを各データセンタに導入し、データ所有者間のトレーニング時間のバランスを取る。
通信オーバーヘッドを低減するため、NebulaFLは分散モデル回転機構を採用し、データセンター間で効果的な知識共有を実現する。
トレーニング時間とコストのバランスをとるため、NebulaFLはデータ所有者の選択とリソーススケジューリングのための報酬誘導戦略を統合している。
実験結果から,最新のFL法と比較して,NebulaFLは5.71倍の精度向上を達成できることがわかった。
さらに、NebulaFLは通信オーバーヘッドを最大50%削減し、61.94%のコストを目標精度で削減することができる。
関連論文リスト
- FLrce: Resource-Efficient Federated Learning with Early-Stopping Strategy [7.963276533979389]
フェデレートラーニング(FL)がIoT(Internet of Things)で大人気
FLrceは、関係ベースのクライアント選択と早期停止戦略を備えた効率的なFLフレームワークである。
その結果,既存のFLフレームワークと比較してFLrceは計算効率を少なくとも30%,通信効率を43%向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-15T10:13:44Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - SemiSFL: Split Federated Learning on Unlabeled and Non-IID Data [34.49090830845118]
フェデレートラーニング(FL)は、複数のクライアントがネットワークエッジでプライベートデータ上で機械学習モデルを協調的にトレーニングできるようにするためのものだ。
クラスタリング正規化を取り入れて,ラベルなしおよび非IIDクライアントデータでSFLを実行する,Semi-supervised SFLシステムを提案する。
本システムは,訓練時間の3.8倍の高速化を実現し,目標精度を達成しつつ通信コストを約70.3%削減し,非IIDシナリオで最大5.8%の精度向上を実現する。
論文 参考訳(メタデータ) (2023-07-29T02:35:37Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
フェデレーションエッジインテリジェンス(FEI)システムにおけるリアルタイム機械学習について検討する。
FEIシステムは異種通信と計算資源分布を示す。
本稿では,共有MLモデルの協調学習における全体の実行時間を最小化するために,時間依存型フェデレーションラーニング(TS-FL)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-26T08:13:22Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
フェデレートラーニング(FL)は、グローバル機械学習モデルをトレーニングするためのソリューションを提供する。
FLは、クライアントデータの分散が非IIDであるときに性能劣化に悩まされる。
本稿では,この劣化に対処するために,新しい適応トレーニングアルゴリズムであるtextttAdaFL$を提案する。
論文 参考訳(メタデータ) (2021-08-12T14:18:05Z) - FedFog: Network-Aware Optimization of Federated Learning over Wireless
Fog-Cloud Systems [40.421253127588244]
フェデレートラーニング(FL)は、訓練されたローカルパラメータを定期的に集約することで、複数のエッジユーザにわたって大規模な分散機械学習タスクを実行することができる。
まず,フォグサーバにおける勾配パラメータの局所的な集約と,クラウドでのグローバルトレーニング更新を行うための効率的なFLアルゴリズム(FedFog)を提案する。
論文 参考訳(メタデータ) (2021-07-04T08:03:15Z) - Towards Heterogeneous Clients with Elastic Federated Learning [45.2715985913761]
フェデレーション学習では、エッジプロセッサやデータウェアハウスなどのデバイスやデータサイロ上で、データをローカルに保ちながら、マシンラーニングモデルをトレーニングする。
本稿では,不均一性に対処する非バイアスアルゴリズムであるElastic Federated Learning (EFL)を提案する。
上流と下流の両方の通信を圧縮する効率的かつ効率的なアルゴリズムである。
論文 参考訳(メタデータ) (2021-06-17T12:30:40Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
本稿では,分散学習政策の環境フットプリントに影響を与える要因を概説し,分析する。
バニラとコンセンサスによって駆動される分散FLポリシーの両方をモデル化する。
その結果、flは低ビット/ジュール効率を特徴とするワイヤレスシステムにおいて、顕著なエンドツーエンドの省エネ(30%-40%)が可能となった。
論文 参考訳(メタデータ) (2021-03-18T16:04:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。