論文の概要: Building a Family of Data Augmentation Models for Low-cost LLM Fine-tuning on the Cloud
- arxiv url: http://arxiv.org/abs/2412.04871v1
- Date: Fri, 06 Dec 2024 09:04:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:56:44.422271
- Title: Building a Family of Data Augmentation Models for Low-cost LLM Fine-tuning on the Cloud
- Title(参考訳): クラウド上での低コストLCMファインチューニングのためのデータ拡張モデルファミリーの構築
- Authors: Yuanhao Yue, Chengyu Wang, Jun Huang, Peng Wang,
- Abstract要約: モデル微調整の効率を大幅に向上するために,データ拡張モデル群を提案する。
これらのモデルは十分に小さなLLMに基づいて訓練され、推論コストの低い重要な機能をサポートする。
実験と応用研究は、我々のアプローチの有効性を証明した。
- 参考スコア(独自算出の注目度): 12.651588927599441
- License:
- Abstract: Specializing LLMs in various domain-specific tasks has emerged as a critical step towards achieving high performance. However, the construction and annotation of datasets in specific domains are always very costly. Apart from using superior and expensive closed-source LLM APIs to construct datasets, some open-source models have become strong enough to handle dataset construction in many scenarios. Thus, we present a family of data augmentation models designed to significantly improve the efficiency for model fine-tuning. These models, trained based on sufficiently small LLMs, support key functionalities with low inference costs: instruction expansion, instruction refinement, and instruction-response pair expansion. To fulfill this goal, we first construct an automatic data collection system with seed datasets generated from both public repositories and our in-house datasets. This system leverages powerful LLMs to expand, refine and re-write the instructions and responses, incorporating quality assessment techniques. Following this, we introduce the training process of our models, which effectively distills task-solving and text synthesis abilities from teacher LLMs. Finally, we demonstrate how we integrate these functionalities into a machine learning platform to support low-cost LLM fine-tuning from both dataset preparation and training perspectives for users. Experiments and an application study prove the effectiveness of our approach.
- Abstract(参考訳): 様々なドメイン固有のタスクにおけるLLMの特殊化は、ハイパフォーマンスを実現するための重要なステップとして現れている。
しかし、特定のドメインにおけるデータセットの構築とアノテーションは常に非常にコストがかかる。
優れた高価なクローズドソースLLM APIを使用してデータセットを構築することとは別に、いくつかのオープンソースモデルは、多くのシナリオでデータセット構築を扱うのに十分なほど強くなっている。
そこで本研究では,モデルファインチューニングの効率を大幅に向上するために,データ拡張モデル群を提案する。
これらのモデルは、十分に小さなLLMに基づいて訓練され、命令拡張、命令修正、命令応答対拡張といった、推論コストの低い重要な機能をサポートする。
この目標を達成するために、私たちはまず、パブリックリポジトリと社内データセットの両方から生成されたシードデータセットを用いた自動データ収集システムを構築します。
このシステムは強力なLCMを利用して命令と応答を拡張し、洗練し、書き直しし、品質評価手法を取り入れている。
次に,教師のLCMからタスク解決能力とテキスト合成能力を効果的に抽出するモデルのトレーニングプロセスを紹介する。
最後に、これらの機能を機械学習プラットフォームに統合して、データセットの準備とユーザのためのトレーニングの両方の観点から、低コストのLCM微調整をサポートする方法を紹介します。
実験と応用研究は、我々のアプローチの有効性を証明した。
関連論文リスト
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - PISTOL: Dataset Compilation Pipeline for Structural Unlearning of LLMs [31.16117964915814]
訓練済みまたは微調整済みのモデルに格納された特定のデータを消去しようとする機械学習は、LLMにとって重要な保護措置として登場した。
構造的アンラーニング手法の開発を容易にするため,マルチシナリオデータセットをコンパイルするパイプラインであるPISTOLを提案する。
Llama2-7BモデルとMistral-7Bモデルの両方で4つの異なる未学習手法を用いてベンチマークを行う。
論文 参考訳(メタデータ) (2024-06-24T17:22:36Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
本稿では,Large Language Models (LLMs) の知識を低データ構造におけるデータ拡張に活用したCLLMを紹介する。
従来のジェネレータと比較して,低データ方式におけるCLLMの優れた性能を示す。
論文 参考訳(メタデータ) (2023-12-19T12:34:46Z) - Large Language Models as Data Preprocessors [9.99065004972981]
大規模言語モデル (LLM) は人工知能において大きな進歩を遂げている。
本研究では、データマイニングおよび分析アプリケーションにおいて重要な段階である、データ前処理におけるその可能性について検討する。
我々は,最先端のプロンプトエンジニアリング技術を統合したデータ前処理のためのLLMベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-30T23:28:43Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
本稿では,データ生成,モデルトレーニング,評価を橋渡しする新しいクローズドループシステムを提案する。
各ループ内で、MLLM-DataEngineはまず評価結果に基づいてモデルの弱点を分析する。
ターゲットとして,異なる種類のデータの比率を調整する適応型バッドケースサンプリングモジュールを提案する。
品質については、GPT-4を用いて、各データタイプで高品質なデータを生成する。
論文 参考訳(メタデータ) (2023-08-25T01:41:04Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
本稿では,Large Language Models (LLMs) の自己誘導手法を導入し,オープンソースデータセットからサクラサンプルを自動識別し,選択する。
我々の重要な革新である命令追従困難度(IFD)メトリックは、モデルが期待する応答と本質的な生成能力の相違を識別するための重要な指標として現れます。
論文 参考訳(メタデータ) (2023-08-23T09:45:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。