論文の概要: Achieving Group Fairness through Independence in Predictive Process Monitoring
- arxiv url: http://arxiv.org/abs/2412.04914v1
- Date: Fri, 06 Dec 2024 10:10:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:57:36.306943
- Title: Achieving Group Fairness through Independence in Predictive Process Monitoring
- Title(参考訳): 予測プロセスモニタリングにおける独立性によるグループフェアネスの達成
- Authors: Jari Peeperkorn, Simon De Vos,
- Abstract要約: 予測プロセス監視は、特定のケースの結果を予測するなど、進行中のプロセス実行の将来の状態を予測することに焦点を当てる。
近年,この領域における機械学習モデルの適用は科学的な注目を集めている。
この研究は、独立性の調査による予測プロセス監視におけるグループフェアネス、すなわち、センシティブなグループメンバーシップによる予測が影響を受けないことを保証する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Predictive process monitoring focuses on forecasting future states of ongoing process executions, such as predicting the outcome of a particular case. In recent years, the application of machine learning models in this domain has garnered significant scientific attention. When using historical execution data, which may contain biases or exhibit unfair behavior, these biases may be encoded into the trained models. Consequently, when such models are deployed to make decisions or guide interventions for new cases, they risk perpetuating this unwanted behavior. This work addresses group fairness in predictive process monitoring by investigating independence, i.e. ensuring predictions are unaffected by sensitive group membership. We explore independence through metrics for demographic parity such as $\Delta$DP, as well as recently introduced, threshold-independent distribution-based alternatives. Additionally, we propose a composite loss functions existing of binary cross-entropy and a distribution-based loss (Wasserstein) to train models that balance predictive performance and fairness, and allow for customizable trade-offs. The effectiveness of both the fairness metrics and the composite loss functions is validated through a controlled experimental setup.
- Abstract(参考訳): 予測プロセス監視は、特定のケースの結果を予測するなど、進行中のプロセス実行の将来の状態を予測することに焦点を当てる。
近年,この領域における機械学習モデルの適用は科学的な注目を集めている。
バイアスを含むり不公平な振る舞いを示すような過去の実行データを使用する場合、これらのバイアスはトレーニングされたモデルにエンコードされる。
結果として、そのようなモデルが新たなケースの意思決定や介入のガイドのためにデプロイされた場合、彼らはこの望ましくない振る舞いを継続するリスクを負う。
この研究は、独立性の調査による予測プロセス監視におけるグループフェアネス、すなわち、センシティブなグループメンバーシップによる予測が影響を受けないことを保証する。
我々は、$\Delta$DPのような人口均等度と、最近導入されたしきい値に依存しない分散ベースの代替手段による独立性を探究する。
さらに,二元的クロスエントロピーと分布に基づく損失(ワッサーシュタイン)を併せ持つ複合損失関数を提案し,予測性能と公平性のバランスを保ち,カスタマイズ可能なトレードオフを可能にするモデルを訓練する。
公平度測定と複合損失関数の有効性は, 制御された実験装置を用いて検証した。
関連論文リスト
- Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
本稿では,ガウス過程(GP)を基礎構造を持つ平均回帰時系列の予測に適用する。
GPは、平均予測だけでなく、将来の軌道上の確率分布全体を予測する可能性を提供する。
これは、不正なボラティリティ評価が資本損失につながる場合、正確な予測だけでは十分でない金融状況において特に有益である。
論文 参考訳(メタデータ) (2024-02-23T06:09:45Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
モーメントマッチングの目的によってモチベーションされ、複合的エラーを軽減し、局所的(しかし前方的な)遷移ポリシーを最適化する。
推論において、学習されたポリシーは反復的なサンプリングのジェネレータとして機能し、学習されたエネルギーはサンプルの品質を評価するための軌道レベル尺度として機能する。
論文 参考訳(メタデータ) (2023-11-02T16:45:25Z) - Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - Simultaneous Improvement of ML Model Fairness and Performance by
Identifying Bias in Data [1.76179873429447]
トレーニング前にデータセットから削除すべき特定の種類のバイアスを記述したインスタンスを検出できるデータ前処理手法を提案する。
特に、類似した特徴を持つインスタンスが存在するが、保護属性の変動に起因するラベルが異なる問題設定では、固有のバイアスがデータセット内で引き起こされる、と主張する。
論文 参考訳(メタデータ) (2022-10-24T13:04:07Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - Prisoners of Their Own Devices: How Models Induce Data Bias in
Performative Prediction [4.874780144224057]
偏見のあるモデルは、社会の特定のグループに不均等に害を与える決定を下すことができる。
多くの作業は静的ML環境での不公平さを測定することに費やされているが、動的でパフォーマンスのよい予測は行っていない。
本稿では,データのバイアスを特徴付ける分類法を提案する。
論文 参考訳(メタデータ) (2022-06-27T10:56:04Z) - Increasing Fairness in Predictions Using Bias Parity Score Based Loss
Function Regularization [0.8594140167290099]
従来のバイナリクロスエントロピーに基づく精度損失と合わせて使用する正則化成分の公平性向上のファミリを導入する。
我々は、人口統計に基づく成人所得データセットと同様に、再分配予測タスクの文脈に展開する。
論文 参考訳(メタデータ) (2021-11-05T17:42:33Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
ドメイン適応と予測不確実性文学を結びつけて、挑戦的な未知分布のモデル精度を予測する。
分類器の予測における信頼度(DoC)の差は,様々な変化に対して,分類器の性能変化を推定することに成功した。
具体的には, 合成分布と自然分布の区別について検討し, その単純さにもかかわらず, DoCは分布差の定量化に優れることを示した。
論文 参考訳(メタデータ) (2021-07-07T15:50:18Z) - Test-time Collective Prediction [73.74982509510961]
マシンラーニングの複数のパーティは、将来のテストポイントを共同で予測したいと考えています。
エージェントは、すべてのエージェントの集合の集合的な専門知識の恩恵を受けることを望んでいるが、データやモデルパラメータを解放する意思はないかもしれない。
我々は、各エージェントの事前学習モデルを利用して、テスト時に集合的な予測を行う分散型メカニズムを探索する。
論文 参考訳(メタデータ) (2021-06-22T18:29:58Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z) - Adversarial Attacks on Probabilistic Autoregressive Forecasting Models [7.305979446312823]
我々は、単一値の列ではなく確率分布の列を出力するニューラルネットワークに対する効果的な逆攻撃を生成する。
提案手法は,2つの課題において,入力摂動の少ない攻撃を効果的に生成できることを実証する。
論文 参考訳(メタデータ) (2020-03-08T13:08:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。