Spinal ligaments detection on vertebrae meshes using registration and 3D edge detection
- URL: http://arxiv.org/abs/2412.05081v1
- Date: Fri, 06 Dec 2024 14:39:06 GMT
- Title: Spinal ligaments detection on vertebrae meshes using registration and 3D edge detection
- Authors: Ivanna Kramer, Lara Blomenkamp, Kevin Weirauch, Sabine Bauer, Dietrich Paulus,
- Abstract summary: The proposed method is able to detect 66 spinal ligament attachment points by using a step-wise approach.
The landmark detection requires approximately 3.0 seconds per vertebra, providing a substantial improvement over existing methods.
- Score: 0.4194295877935868
- License:
- Abstract: Spinal ligaments are crucial elements in the complex biomechanical simulation models as they transfer forces on the bony structure, guide and limit movements and stabilize the spine. The spinal ligaments encompass seven major groups being responsible for maintaining functional interrelationships among the other spinal components. Determination of the ligament origin and insertion points on the 3D vertebrae models is an essential step in building accurate and complex spine biomechanical models. In our paper, we propose a pipeline that is able to detect 66 spinal ligament attachment points by using a step-wise approach. Our method incorporates a fast vertebra registration that strategically extracts only 15 3D points to compute the transformation, and edge detection for a precise projection of the registered ligaments onto any given patient-specific vertebra model. Our method shows high accuracy, particularly in identifying landmarks on the anterior part of the vertebra with an average distance of 2.24 mm for anterior longitudinal ligament and 1.26 mm for posterior longitudinal ligament landmarks. The landmark detection requires approximately 3.0 seconds per vertebra, providing a substantial improvement over existing methods. Clinical relevance: using the proposed method, the required landmarks that represent origin and insertion points for forces in the biomechanical spine models can be localized automatically in an accurate and time-efficient manner.
Related papers
- Reconstruction of 3D lumbar spine models from incomplete segmentations using landmark detection [0.4194295877935868]
We present a novel method to reconstruct complete 3D lumbar spine models from incomplete 3D vertebral bodies.
Our method achieves the registration of the entire lumbar spine, spanning segments L1 to L5, in just 0.14 seconds.
arXiv Detail & Related papers (2024-12-06T14:23:42Z) - 3D Spine Shape Estimation from Single 2D DXA [49.53978253009771]
We propose an automated framework to estimate the 3D spine shape from 2D DXA scans.
We achieve this by explicitly predicting the sagittal view of the spine from the DXA scan.
arXiv Detail & Related papers (2024-12-02T13:58:26Z) - SpineFM: Leveraging Foundation Models for Automatic Spine X-ray Segmentation [0.0]
This paper introduces SpineFM, a novel pipeline that achieves state-of-the-art performance in the automatic segmentation and identification of vertebral bodies.
We achieved outstanding results on two publicly available spine X-Ray datasets, with successful identification of 97.8% and 99.6% of annotated vertebrae.
arXiv Detail & Related papers (2024-11-01T02:51:21Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - Accurate Scoliosis Vertebral Landmark Localization on X-ray Images via
Shape-constrained Multi-stage Cascaded CNNs [14.298452017755197]
Vertebral landmark localization is a crucial step for variant spine-related clinical applications.
We propose multi-stage cascaded convolutional neural networks (CNNs) to split the single task into two sequential steps.
We evaluate our method on the AASCE dataset that consists of 609 tight spinal-posterior X-ray images.
arXiv Detail & Related papers (2022-06-05T02:45:40Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Stacked Hourglass Network with a Multi-level Attention Mechanism: Where
to Look for Intervertebral Disc Labeling [2.3848738964230023]
We propose a stacked hourglass network with multi-level attention mechanism to jointly learn intervertebral disc position and their skeleton structure.
The proposed deep learning model takes into account the strength of semantic segmentation and pose estimation technique to handle the missing area and false positive detection.
arXiv Detail & Related papers (2021-08-14T14:53:27Z) - A Convolutional Approach to Vertebrae Detection and Labelling in Whole
Spine MRI [70.04389979779195]
We propose a novel convolutional method for the detection and identification of vertebrae in whole spine MRIs.
This involves using a learnt vector field to group detected vertebrae corners together into individual vertebral bodies.
We demonstrate the clinical applicability of this method, using it for automated scoliosis detection in both lumbar and whole spine MR scans.
arXiv Detail & Related papers (2020-07-06T09:37:12Z) - MotioNet: 3D Human Motion Reconstruction from Monocular Video with
Skeleton Consistency [72.82534577726334]
We introduce MotioNet, a deep neural network that directly reconstructs the motion of a 3D human skeleton from monocular video.
Our method is the first data-driven approach that directly outputs a kinematic skeleton, which is a complete, commonly used, motion representation.
arXiv Detail & Related papers (2020-06-22T08:50:09Z) - Analysis of Scoliosis From Spinal X-Ray Images [17.8260780895433]
Measurement of scoliosis requires labeling and identification of vertebrae in the spine.
Scoliosis is a congenital disease in which the spine is deformed from its normal shape.
We propose an end-to-end segmentation model that provides a fully automatic and reliable segmentation of the vertebrae associated with scoliosis measurement.
arXiv Detail & Related papers (2020-04-15T05:36:28Z) - Vertebra-Focused Landmark Detection for Scoliosis Assessment [54.24477530836629]
We propose a novel vertebra-focused landmark detection method.
Our model first localizes the vertebra centers, based on which it then traces the four corner landmarks of the vertebra through the learned corner offset.
Results demonstrate the merits of our method in both Cobb angle measurement and landmark detection on low-contrast and ambiguous X-ray images.
arXiv Detail & Related papers (2020-01-09T19:17:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.