The Prompt Canvas: A Literature-Based Practitioner Guide for Creating Effective Prompts in Large Language Models
- URL: http://arxiv.org/abs/2412.05127v1
- Date: Fri, 06 Dec 2024 15:35:18 GMT
- Title: The Prompt Canvas: A Literature-Based Practitioner Guide for Creating Effective Prompts in Large Language Models
- Authors: Michael Hewing, Vincent Leinhos,
- Abstract summary: This paper argues for the creation of an overarching framework that synthesizes existing methodologies into a cohesive overview for practitioners.
We present the Prompt Canvas, a structured framework resulting from an extensive literature review on prompt engineering.
- Score: 0.0
- License:
- Abstract: The rise of large language models (LLMs) has highlighted the importance of prompt engineering as a crucial technique for optimizing model outputs. While experimentation with various prompting methods, such as Few-shot, Chain-of-Thought, and role-based techniques, has yielded promising results, these advancements remain fragmented across academic papers, blog posts and anecdotal experimentation. The lack of a single, unified resource to consolidate the field's knowledge impedes the progress of both research and practical application. This paper argues for the creation of an overarching framework that synthesizes existing methodologies into a cohesive overview for practitioners. Using a design-based research approach, we present the Prompt Canvas, a structured framework resulting from an extensive literature review on prompt engineering that captures current knowledge and expertise. By combining the conceptual foundations and practical strategies identified in prompt engineering, the Prompt Canvas provides a practical approach for leveraging the potential of Large Language Models. It is primarily designed as a learning resource for pupils, students and employees, offering a structured introduction to prompt engineering. This work aims to contribute to the growing discourse on prompt engineering by establishing a unified methodology for researchers and providing guidance for practitioners.
Related papers
- Model-Guided Fieldwork: A Practical, Methodological and Philosophical Investigation in the use of Ethnomethodology for Engineering Software Requirements [0.0]
This thesis focuses on the use of ethnomethodological fieldwork for the engineering of software requirements.
It proposes an approach, dubbed "Model Guided Fieldwork," to support a fieldworker in making observations that may contribute to a technological development process.
arXiv Detail & Related papers (2024-11-14T09:24:56Z) - A Survey on Model MoErging: Recycling and Routing Among Specialized Experts for Collaborative Learning [136.89318317245855]
MoErging aims to recycle expert models to create an aggregate system with improved performance or generalization.
A key component of MoErging methods is the creation of a router that decides which expert model(s) to use for a particular input or application.
This survey includes a novel taxonomy for cataloging key design choices and clarifying suitable applications for each method.
arXiv Detail & Related papers (2024-08-13T17:49:00Z) - Inference Optimizations for Large Language Models: Effects, Challenges, and Practical Considerations [0.0]
Large language models are ubiquitous in natural language processing because they can adapt to new tasks without retraining.
This literature review focuses on various techniques for reducing resource requirements and compressing large language models.
arXiv Detail & Related papers (2024-08-06T12:07:32Z) - An Empirical Categorization of Prompting Techniques for Large Language
Models: A Practitioner's Guide [0.34530027457862006]
In this survey, we examine some of the most well-known prompting techniques from both academic and practical viewpoints.
We present an overview of each category, aiming to clarify their unique contributions and showcase their practical applications.
arXiv Detail & Related papers (2024-02-18T23:03:56Z) - A Systematic Survey of Prompt Engineering in Large Language Models:
Techniques and Applications [11.568575664316143]
This paper provides a structured overview of recent advancements in prompt engineering, categorized by application area.
We provide a summary detailing the prompting methodology, its applications, the models involved, and the datasets utilized.
This systematic analysis enables a better understanding of this rapidly developing field and facilitates future research by illuminating open challenges and opportunities for prompt engineering.
arXiv Detail & Related papers (2024-02-05T19:49:13Z) - Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review [1.6006550105523192]
Review explores the pivotal role of prompt engineering in unleashing the capabilities of Large Language Models (LLMs)
Examines both foundational and advanced methodologies of prompt engineering, including techniques such as self-consistency, chain-of-thought, and generated knowledge.
Review also reflects the essential role of prompt engineering in advancing AI capabilities, providing a structured framework for future research and application.
arXiv Detail & Related papers (2023-10-23T09:15:18Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
We present a novel framework that harnesses the rich contextual information and semantic representations provided by large language models to analyze behavior graphs.
By leveraging this capability, our framework enables personalized and accurate job recommendations for individual users.
arXiv Detail & Related papers (2023-07-10T11:29:41Z) - Review of Large Vision Models and Visual Prompt Engineering [50.63394642549947]
Review aims to summarize the methods employed in the computer vision domain for large vision models and visual prompt engineering.
We present influential large models in the visual domain and a range of prompt engineering methods employed on these models.
arXiv Detail & Related papers (2023-07-03T08:48:49Z) - Knowledge-Aware Bayesian Deep Topic Model [50.58975785318575]
We propose a Bayesian generative model for incorporating prior domain knowledge into hierarchical topic modeling.
Our proposed model efficiently integrates the prior knowledge and improves both hierarchical topic discovery and document representation.
arXiv Detail & Related papers (2022-09-20T09:16:05Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
This paper surveys the components of modeling approaches relaying task impacts across various generation tasks such as storytelling, summarization, translation etc.
We present an abstraction of the imperative techniques with respect to learning paradigms, pretraining, modeling approaches, decoding and the key challenges outstanding in the field in each of them.
arXiv Detail & Related papers (2020-10-14T17:54:42Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
We develop a list of diagnostic properties for evaluating existing explainability techniques.
We compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model's performance and the agreement of its rationales with human ones.
arXiv Detail & Related papers (2020-09-25T12:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.