論文の概要: Spatially-Adaptive Hash Encodings For Neural Surface Reconstruction
- arxiv url: http://arxiv.org/abs/2412.05179v1
- Date: Fri, 06 Dec 2024 16:54:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:55:59.966938
- Title: Spatially-Adaptive Hash Encodings For Neural Surface Reconstruction
- Title(参考訳): ニューラルサーフェス再構成のための空間適応型ハッシュ符号化
- Authors: Thomas Walker, Octave Mariotti, Amir Vaxman, Hakan Bilen,
- Abstract要約: 本研究では,ネットワークが空間の関数として符号化ベースを選択することができる学習手法を提案する。
その結果、空間適応的なアプローチにより、ネットワークはノイズを発生させることなくより広い周波数域に適合できる。
- 参考スコア(独自算出の注目度): 30.561368257031393
- License:
- Abstract: Positional encodings are a common component of neural scene reconstruction methods, and provide a way to bias the learning of neural fields towards coarser or finer representations. Current neural surface reconstruction methods use a "one-size-fits-all" approach to encoding, choosing a fixed set of encoding functions, and therefore bias, across all scenes. Current state-of-the-art surface reconstruction approaches leverage grid-based multi-resolution hash encoding in order to recover high-detail geometry. We propose a learned approach which allows the network to choose its encoding basis as a function of space, by masking the contribution of features stored at separate grid resolutions. The resulting spatially adaptive approach allows the network to fit a wider range of frequencies without introducing noise. We test our approach on standard benchmark surface reconstruction datasets and achieve state-of-the-art performance on two benchmark datasets.
- Abstract(参考訳): 位置エンコーディングは、ニューラルシーン再構築手法の共通部分であり、ニューラルネットワークの学習を粗い表現やより微細な表現に偏らせる方法を提供する。
現在のニューラルサーフェス再構成法では、すべてのシーンで固定された符号化関数のセットを選択し、従ってバイアスを選択する「ワンサイズフィット」アプローチを採用している。
現在の最先端表面再構成手法は、格子ベースの多重解像度ハッシュ符号化を利用して、高精度な形状を復元する。
本研究では,異なるグリッド解像度に格納された特徴の寄与を隠蔽することにより,ネットワークが空間の関数として符号化ベースを選択することができる学習手法を提案する。
その結果、空間適応的なアプローチにより、ネットワークはノイズを発生させることなくより広い周波数域に適合できる。
提案手法は,標準的なベンチマークサーフェス再構成データセットで検証し,2つのベンチマークデータセットで最先端のパフォーマンスを実現する。
関連論文リスト
- Indoor Scene Reconstruction with Fine-Grained Details Using Hybrid Representation and Normal Prior Enhancement [50.56517624931987]
多視点RGB画像からの室内シーンの再構成は、平坦領域とテクスチャレス領域の共存により困難である。
近年の手法では、予測された表面正規化によって支援されたニューラルラジアンス場を利用してシーン形状を復元している。
本研究は, 上記の制限に対処して, 高忠実度表面を細かな詳細で再構築することを目的とする。
論文 参考訳(メタデータ) (2023-09-14T12:05:29Z) - Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape
Reconstruction from Point Clouds [53.02191521770926]
我々は,3次元形状を点から復元するという課題に対処する形状再構成アーキテクチャであるニューラルポアソン表面再構成(nPSR)を導入する。
nPSRには2つの大きな利点がある: まず、高分解能評価において同等の性能を達成しつつ、低分解能データの効率的なトレーニングを可能にする。
全体として、ニューラル・ポアソン表面の再構成は、形状再構成における古典的なディープニューラルネットワークの限界を改良するだけでなく、再構築品質、走行時間、分解能非依存の観点からも優れた結果が得られる。
論文 参考訳(メタデータ) (2023-08-03T13:56:07Z) - JSRNN: Joint Sampling and Reconstruction Neural Networks for High
Quality Image Compressed Sensing [8.902545322578925]
提案フレームワークには,サンプリングサブネットワークと再構築サブネットワークという2つのサブネットワークが含まれている。
再構成サブネットワークでは、スタックド・デノイング・オートエンコーダ(SDA)と畳み込みニューラルネットワーク(CNN)を組み合わせたカスケードネットワークが信号の再構成のために設計されている。
このフレームワークは、特にサンプリングレートの低い他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2022-11-11T02:20:30Z) - NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor
Multi-view Stereo [97.07453889070574]
本稿では,従来のSfM再構成と学習に基づく先行手法を併用した多視点深度推定手法を提案する。
提案手法は室内シーンにおける最先端手法を著しく上回ることを示す。
論文 参考訳(メタデータ) (2021-09-02T17:54:31Z) - Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid
Representations [21.64457003420851]
我々は,幾何認識によるサンプリングと正規化を課すことができるハイブリッドニューラルサーフェス表現を開発した。
本手法は、多視点画像や点群から神経暗黙面を再構築する技術を改善するために適用できることを実証する。
論文 参考訳(メタデータ) (2020-12-11T15:51:04Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
ニューラルな暗示表現で形状を一般化することは、各関数空間上の学習先行値に比例する。
形状空間の学習をメタラーニング問題として定式化し、勾配に基づくメタラーニングアルゴリズムを利用してこの課題を解決する。
論文 参考訳(メタデータ) (2020-06-17T05:14:53Z) - Neural Subdivision [58.97214948753937]
本稿では,データ駆動型粗粒度モデリングの新しいフレームワークであるNeural Subdivisionを紹介する。
すべてのローカルメッシュパッチで同じネットワーク重みのセットを最適化するため、特定の入力メッシュや固定属、カテゴリに制約されないアーキテクチャを提供します。
単一の高分解能メッシュでトレーニングしても,本手法は新規な形状に対して合理的な区分を生成する。
論文 参考訳(メタデータ) (2020-05-04T20:03:21Z) - Deep Manifold Prior [37.725563645899584]
本稿では,3次元形状の表面などの多様体構造データに先行する手法を提案する。
この方法で生成された曲面は滑らかであり、ガウス過程を特徴とする制限的な挙動を示し、完全連結および畳み込みネットワークに対して数学的にそのような特性を導出する。
論文 参考訳(メタデータ) (2020-04-08T20:47:56Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
本稿では,ディープニューラルネットワークの中間層に関連する実験的なRademacher複雑性について検討する。
上記の問題に対処するための特徴歪み法(Disout)を提案する。
より高い試験性能を有するディープニューラルネットワークを作製するための特徴写像歪みの優位性を解析し、実証した。
論文 参考訳(メタデータ) (2020-02-23T13:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。