論文の概要: One-shot Federated Learning via Synthetic Distiller-Distillate Communication
- arxiv url: http://arxiv.org/abs/2412.05186v1
- Date: Fri, 06 Dec 2024 17:05:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:57:07.881665
- Title: One-shot Federated Learning via Synthetic Distiller-Distillate Communication
- Title(参考訳): 合成ディステレータ-蒸留通信によるワンショットフェデレーション学習
- Authors: Junyuan Zhang, Songhua Liu, Xinchao Wang,
- Abstract要約: One-shot Federated Learning (FL)は、単一のコミュニケーションで機械学習モデルの協調トレーニングを促進する強力な技術である。
我々はこれらの課題に対処するために,新しい,実用的なワンショットFLフレームワークであるFedSD2Cを提案する。
- 参考スコア(独自算出の注目度): 63.89557765137003
- License:
- Abstract: One-shot Federated learning (FL) is a powerful technology facilitating collaborative training of machine learning models in a single round of communication. While its superiority lies in communication efficiency and privacy preservation compared to iterative FL, one-shot FL often compromises model performance. Prior research has primarily focused on employing data-free knowledge distillation to optimize data generators and ensemble models for better aggregating local knowledge into the server model. However, these methods typically struggle with data heterogeneity, where inconsistent local data distributions can cause teachers to provide misleading knowledge. Additionally, they may encounter scalability issues with complex datasets due to inherent two-step information loss: first, during local training (from data to model), and second, when transferring knowledge to the server model (from model to inversed data). In this paper, we propose FedSD2C, a novel and practical one-shot FL framework designed to address these challenges. FedSD2C introduces a distiller to synthesize informative distillates directly from local data to reduce information loss and proposes sharing synthetic distillates instead of inconsistent local models to tackle data heterogeneity. Our empirical results demonstrate that FedSD2C consistently outperforms other one-shot FL methods with more complex and real datasets, achieving up to 2.6 the performance of the best baseline. Code: https://github.com/Carkham/FedSD2C
- Abstract(参考訳): One-shot Federated Learning (FL)は、単一のコミュニケーションで機械学習モデルの協調トレーニングを促進する強力な技術である。
その優位性は、反復FLに比べて通信効率とプライバシー保護にあるが、ワンショットFLはモデル性能を損なうことが多い。
これまでの研究は主に、データ生成器とアンサンブルモデルを最適化し、ローカルな知識をサーバモデルに集約するために、データフリーな知識蒸留を使うことに重点を置いてきた。
しかし、これらの手法はデータの不均一性に苦しむことが多く、不整合なローカルデータ分布は教師に誤解を招くような知識を提供する。
ひとつは、ローカルトレーニング中(データからモデルへ)、もうひとつは、知識をサーバモデル(モデルから逆データへ)に転送する場合です。
本稿では,これらの課題に対処する新規かつ実用的なFLフレームワークであるFedSD2Cを提案する。
FedSD2Cは、局所データから直接情報蒸留物を合成し、情報損失を減らす蒸留器を導入し、データの不均一性に取り組むために、一貫性のない局所モデルの代わりに合成蒸留機を共有することを提案する。
実験の結果、FedSD2Cは、より複雑で実際のデータセットで他のワンショットFLメソッドよりも一貫して優れており、最高のベースラインの性能は2.6であることがわかった。
コード:https://github.com/Carkham/FedSD2C
関連論文リスト
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FLIGAN: Enhancing Federated Learning with Incomplete Data using GAN [1.5749416770494706]
Federated Learning (FL)は、ネットワークデバイス上での機械学習モデルの分散トレーニングのためのプライバシ保護メカニズムを提供する。
本稿では,FLにおけるデータ不完全性問題に対処する新しいアプローチであるFLIGANを提案する。
本手法はFLのプライバシ要件に則り,プロセス内の実際のデータを共有せずに合成データをフェデレートした方法で生成する。
論文 参考訳(メタデータ) (2024-03-25T16:49:38Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - Unlocking the Potential of Federated Learning: The Symphony of Dataset
Distillation via Deep Generative Latents [43.282328554697564]
本稿ではサーバ側のFLデータセット蒸留フレームワークを提案する。
従来の手法とは異なり,サーバは事前学習した深層生成モデルから事前知識を活用できる。
我々のフレームワークは、サーバが複数の異種データ分散を訓練するのではなく、マルチモーダル分布を訓練するため、ベースラインよりも早く収束する。
論文 参考訳(メタデータ) (2023-12-03T23:30:48Z) - FedHiSyn: A Hierarchical Synchronous Federated Learning Framework for
Resource and Data Heterogeneity [56.82825745165945]
フェデレートラーニング(FL)は、データプライバシを保護するために複数のデバイスに格納された分散生データを共有することなく、グローバルモデルのトレーニングを可能にする。
本稿では,階層型同期FLフレームワークであるFedHiSynを提案し,トラグラー効果や時代遅れモデルの問題に対処する。
提案手法は,MNIST,EMNIST,CIFAR10,CIFAR100のデータセットと多種多様なデバイス設定に基づいて評価する。
論文 参考訳(メタデータ) (2022-06-21T17:23:06Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - Federated Causal Discovery [74.37739054932733]
本稿では,DAG-Shared Federated Causal Discovery (DS-FCD) という勾配学習フレームワークを開発する。
ローカルデータに直接触れることなく因果グラフを学習し、データの不均一性を自然に扱うことができる。
合成および実世界の両方のデータセットに対する大規模な実験により,提案手法の有効性が検証された。
論文 参考訳(メタデータ) (2021-12-07T08:04:12Z) - Data-Free Knowledge Distillation for Heterogeneous Federated Learning [31.364314540525218]
Federated Learning(FL)は、グローバルサーバがデータにアクセスせずに、ローカルユーザのモデルパラメータを反復的に平均する分散機械学習パラダイムである。
知識蒸留(Knowledge Distillation)は、異種ユーザからの集約された知識を使用してサーバモデルを精錬することによって、この問題に対処するために最近登場した。
異種FLに対処するデータフリーな知識蒸留手法を提案し,サーバはユーザ情報をデータフリーでアンサンブルするための軽量なジェネレータを学習する。
論文 参考訳(メタデータ) (2021-05-20T22:30:45Z) - FLaPS: Federated Learning and Privately Scaling [3.618133010429131]
フェデレートラーニング(Federated Learning, FL)とは、データを収集するデバイスにモデルを転送する分散学習プロセスである。
FLaPS(Federated Learning and Privately Scaling)アーキテクチャは,システムのセキュリティとプライバシだけでなく,スケーラビリティも向上する。
論文 参考訳(メタデータ) (2020-09-13T14:20:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。