FedBKD: Distilled Federated Learning to Embrace Gerneralization and Personalization on Non-IID Data
- URL: http://arxiv.org/abs/2506.20245v1
- Date: Wed, 25 Jun 2025 08:42:10 GMT
- Title: FedBKD: Distilled Federated Learning to Embrace Gerneralization and Personalization on Non-IID Data
- Authors: Yushan Zhao, Jinyuan He, Donglai Chen, Weijie Luo, Chong Xie, Ri Zhang, Yonghong Chen, Yan Xu,
- Abstract summary: Federated learning (FL) is a decentralized collaborative machine learning (ML) technique.<n>One major challenge in FL is handling the non-identical and independent distributed (non-IID) data.<n>We propose a novel data-free distillation framework, Federated Bidirectional Knowledge Distillation (FedBKD)
- Score: 3.5168489264149527
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated learning (FL) is a decentralized collaborative machine learning (ML) technique. It provides a solution to the issues of isolated data islands and data privacy leakage in industrial ML practices. One major challenge in FL is handling the non-identical and independent distributed (non-IID) data. Current solutions either focus on constructing an all-powerful global model, or customizing personalized local models. Few of them can provide both a well-generalized global model and well-performed local models at the same time. Additionally, many FL solutions to the non-IID problem are benefited from introducing public datasets. However, this will also increase the risk of data leakage. To tackle the problems, we propose a novel data-free distillation framework, Federated Bidirectional Knowledge Distillation (FedBKD). Specifically, we train Generative Adversarial Networks (GAN) for synthetic data. During the GAN training, local models serve as discriminators and their parameters are frozen. The synthetic data is then used for bidirectional distillation between global and local models to achieve knowledge interactions so that performances for both sides are improved. We conduct extensive experiments on 4 benchmarks under different non-IID settings. The results show that FedBKD achieves SOTA performances in every case.
Related papers
- Learning Critically: Selective Self Distillation in Federated Learning on Non-IID Data [17.624808621195978]
We propose a Selective Self-Distillation method for Federated learning (FedSSD)<n>FedSSD imposes adaptive constraints on the local updates by self-distilling the global model's knowledge.<n>It achieves better generalization and robustness in fewer communication rounds, compared with other state-of-the-art FL methods.
arXiv Detail & Related papers (2025-04-20T18:06:55Z) - One-shot Federated Learning via Synthetic Distiller-Distillate Communication [63.89557765137003]
One-shot Federated learning (FL) is a powerful technology facilitating collaborative training of machine learning models in a single round of communication.<n>We propose FedSD2C, a novel and practical one-shot FL framework designed to address these challenges.
arXiv Detail & Related papers (2024-12-06T17:05:34Z) - MultiConfederated Learning: Inclusive Non-IID Data handling with Decentralized Federated Learning [1.2726316791083532]
Federated Learning (FL) has emerged as a prominent privacy-preserving technique for enabling use cases like confidential clinical machine learning.
FL operates by aggregating models trained by remote devices which owns the data.
We propose MultiConfederated Learning: a decentralized FL framework which is designed to handle non-IID data.
arXiv Detail & Related papers (2024-04-20T16:38:26Z) - FLIGAN: Enhancing Federated Learning with Incomplete Data using GAN [1.5749416770494706]
Federated Learning (FL) provides a privacy-preserving mechanism for distributed training of machine learning models on networked devices.
We propose FLIGAN, a novel approach to address the issue of data incompleteness in FL.
Our methodology adheres to FL's privacy requirements by generating synthetic data in a federated manner without sharing the actual data in the process.
arXiv Detail & Related papers (2024-03-25T16:49:38Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources.
The lack of model privacy protection in FL becomes an unneglectable challenge.
We propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts.
arXiv Detail & Related papers (2023-11-12T11:01:10Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - The Best of Both Worlds: Accurate Global and Personalized Models through
Federated Learning with Data-Free Hyper-Knowledge Distillation [17.570719572024608]
FedHKD (Federated Hyper-Knowledge Distillation) is a novel FL algorithm in which clients rely on knowledge distillation to train local models.
Unlike other KD-based pFL methods, FedHKD does not rely on a public dataset nor it deploys a generative model at the server.
We conduct extensive experiments on visual datasets in a variety of scenarios, demonstrating that FedHKD provides significant improvement in both personalized as well as global model performance.
arXiv Detail & Related papers (2023-01-21T16:20:57Z) - FEDIC: Federated Learning on Non-IID and Long-Tailed Data via Calibrated
Distillation [54.2658887073461]
Dealing with non-IID data is one of the most challenging problems for federated learning.
This paper studies the joint problem of non-IID and long-tailed data in federated learning and proposes a corresponding solution called Federated Ensemble Distillation with Imbalance (FEDIC)
FEDIC uses model ensemble to take advantage of the diversity of models trained on non-IID data.
arXiv Detail & Related papers (2022-04-30T06:17:36Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.