Global Optimization with A Power-Transformed Objective and Gaussian Smoothing
- URL: http://arxiv.org/abs/2412.05204v2
- Date: Mon, 23 Dec 2024 16:15:34 GMT
- Title: Global Optimization with A Power-Transformed Objective and Gaussian Smoothing
- Authors: Chen Xu,
- Abstract summary: We show that our method converges to a solution in the $delta$-neighborhood of $f$'s global optimum point.
The convergence rate is $O(d2sigma4varepsilon-2)$, which is faster than both the standard and single-loop homotopy methods.
- Score: 4.275224221939364
- License:
- Abstract: We propose a novel method that solves global optimization problems in two steps: (1) perform a (exponential) power-$N$ transformation to the not-necessarily differentiable objective function $f$ and get $f_N$, and (2) optimize the Gaussian-smoothed $f_N$ with stochastic approximations. Under mild conditions on $f$, for any $\delta>0$, we prove that with a sufficiently large power $N_\delta$, this method converges to a solution in the $\delta$-neighborhood of $f$'s global optimum point. The convergence rate is $O(d^2\sigma^4\varepsilon^{-2})$, which is faster than both the standard and single-loop homotopy methods if $\sigma$ is pre-selected to be in $(0,1)$. In most of the experiments performed, our method produces better solutions than other algorithms that also apply smoothing techniques.
Related papers
- An Algorithm with Optimal Dimension-Dependence for Zero-Order Nonsmooth Nonconvex Stochastic Optimization [37.300102993926046]
We study the complexity of producing neither smooth nor convex points of Lipschitz objectives which are possibly using only zero-order evaluations.
Our analysis is based on a simple yet powerful.
Goldstein-subdifferential set, which allows recent advancements in.
nonsmooth non optimization.
arXiv Detail & Related papers (2023-07-10T11:56:04Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Near-Optimal Non-Convex Stochastic Optimization under Generalized
Smoothness [21.865728815935665]
Two recent works established the $O(epsilon-3)$ sample complexity to obtain an $O(epsilon)$-stationary point.
However, both require a large batch size on the order of $mathrmploy(epsilon-1)$, which is not only computationally burdensome but also unsuitable for streaming applications.
In this work, we solve the prior two problems simultaneously by revisiting a simple variant of the STORM algorithm.
arXiv Detail & Related papers (2023-02-13T00:22:28Z) - Randomized Block-Coordinate Optimistic Gradient Algorithms for Root-Finding Problems [11.15373699918747]
We develop two new algorithms to approximate a solution of nonlinear equations in large-scale settings.
We apply our methods to a class of large-scale finite-sum inclusions, which covers prominent applications in machine learning, statistical learning, and network optimization.
arXiv Detail & Related papers (2023-01-08T21:46:27Z) - Extra-Newton: A First Approach to Noise-Adaptive Accelerated
Second-Order Methods [57.050204432302195]
This work proposes a universal and adaptive second-order method for minimizing second-order smooth, convex functions.
Our algorithm achieves $O(sigma / sqrtT)$ convergence when the oracle feedback is with variance $sigma2$, and improves its convergence to $O( 1 / T3)$ with deterministic oracles.
arXiv Detail & Related papers (2022-11-03T14:12:51Z) - Perseus: A Simple and Optimal High-Order Method for Variational
Inequalities [81.32967242727152]
A VI involves finding $xstar in mathcalX$ such that $langle F(x), x - xstarrangle geq 0$ for all $x in mathcalX$.
We propose a $pth$-order method that does textitnot require any line search procedure and provably converges to a weak solution at a rate of $O(epsilon-2/(p+1))$.
arXiv Detail & Related papers (2022-05-06T13:29:14Z) - TURF: A Two-factor, Universal, Robust, Fast Distribution Learning
Algorithm [64.13217062232874]
One of its most powerful and successful modalities approximates every distribution to an $ell$ distance essentially at most a constant times larger than its closest $t$-piece degree-$d_$.
We provide a method that estimates this number near-optimally, hence helps approach the best possible approximation.
arXiv Detail & Related papers (2022-02-15T03:49:28Z) - A first-order primal-dual method with adaptivity to local smoothness [64.62056765216386]
We consider the problem of finding a saddle point for the convex-concave objective $min_x max_y f(x) + langle Ax, yrangle - g*(y)$, where $f$ is a convex function with locally Lipschitz gradient and $g$ is convex and possibly non-smooth.
We propose an adaptive version of the Condat-Vu algorithm, which alternates between primal gradient steps and dual steps.
arXiv Detail & Related papers (2021-10-28T14:19:30Z) - Nonconvex-Nonconcave Min-Max Optimization with a Small Maximization
Domain [11.562923882714093]
We study the problem of finding approximate first-order stationary points in optimization problems of the form $min_x in max_y in Y f(x,y)
Our approach relies upon replacing the function $f(x,cdot)$ with its $kth order Taylor approximation (in $y$) and finding a near-stationary point in $Y$.
arXiv Detail & Related papers (2021-10-08T07:46:18Z) - Finding Global Minima via Kernel Approximations [90.42048080064849]
We consider the global minimization of smooth functions based solely on function evaluations.
In this paper, we consider an approach that jointly models the function to approximate and finds a global minimum.
arXiv Detail & Related papers (2020-12-22T12:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.