Near-Optimal Non-Convex Stochastic Optimization under Generalized
Smoothness
- URL: http://arxiv.org/abs/2302.06032v2
- Date: Sat, 28 Oct 2023 03:26:32 GMT
- Title: Near-Optimal Non-Convex Stochastic Optimization under Generalized
Smoothness
- Authors: Zijian Liu, Srikanth Jagabathula, Zhengyuan Zhou
- Abstract summary: Two recent works established the $O(epsilon-3)$ sample complexity to obtain an $O(epsilon)$-stationary point.
However, both require a large batch size on the order of $mathrmploy(epsilon-1)$, which is not only computationally burdensome but also unsuitable for streaming applications.
In this work, we solve the prior two problems simultaneously by revisiting a simple variant of the STORM algorithm.
- Score: 21.865728815935665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The generalized smooth condition, $(L_{0},L_{1})$-smoothness, has triggered
people's interest since it is more realistic in many optimization problems
shown by both empirical and theoretical evidence. Two recent works established
the $O(\epsilon^{-3})$ sample complexity to obtain an $O(\epsilon)$-stationary
point. However, both require a large batch size on the order of
$\mathrm{ploy}(\epsilon^{-1})$, which is not only computationally burdensome
but also unsuitable for streaming applications. Additionally, these existing
convergence bounds are established only for the expected rate, which is
inadequate as they do not supply a useful performance guarantee on a single
run. In this work, we solve the prior two problems simultaneously by revisiting
a simple variant of the STORM algorithm. Specifically, under the
$(L_{0},L_{1})$-smoothness and affine-type noises, we establish the first
near-optimal $O(\log(1/(\delta\epsilon))\epsilon^{-3})$ high-probability sample
complexity where $\delta\in(0,1)$ is the failure probability. Besides, for the
same algorithm, we also recover the optimal $O(\epsilon^{-3})$ sample
complexity for the expected convergence with improved dependence on the
problem-dependent parameter. More importantly, our convergence results only
require a constant batch size in contrast to the previous works.
Related papers
- An Algorithm with Optimal Dimension-Dependence for Zero-Order Nonsmooth Nonconvex Stochastic Optimization [37.300102993926046]
We study the complexity of producing neither smooth nor convex points of Lipschitz objectives which are possibly using only zero-order evaluations.
Our analysis is based on a simple yet powerful.
Goldstein-subdifferential set, which allows recent advancements in.
nonsmooth non optimization.
arXiv Detail & Related papers (2023-07-10T11:56:04Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Breaking the Lower Bound with (Little) Structure: Acceleration in
Non-Convex Stochastic Optimization with Heavy-Tailed Noise [28.780192812703948]
We consider the optimization problem with smooth but not necessarily convex objectives in the heavy-tailed noise regime.
We show that one can achieve a faster rate than that dictated by the lower bound $Omega(Tfrac1-p3p-2)$ with only tiny bit of structure.
We also establish that it guarantees a high-probability convergence rate of $O(log(T/delta)Tfrac1-p3p-2)$ under a mild condition.
arXiv Detail & Related papers (2023-02-14T00:23:42Z) - Beyond Uniform Smoothness: A Stopped Analysis of Adaptive SGD [38.221784575853796]
This work considers the problem of finding first-order stationary point of a non atau function with potentially constant smoothness using a gradient.
We develop a technique that allows us to prove $mathcalO(fracmathrmpolylog(T)sigmatT)$ convergence rates without assuming uniform bounds on the noise.
arXiv Detail & Related papers (2023-02-13T18:13:36Z) - ReSQueing Parallel and Private Stochastic Convex Optimization [59.53297063174519]
We introduce a new tool for BFG convex optimization (SCO): a Reweighted Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density.
We develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings.
arXiv Detail & Related papers (2023-01-01T18:51:29Z) - An Optimal Stochastic Algorithm for Decentralized Nonconvex Finite-sum
Optimization [25.21457349137344]
We show a proof to show DEAREST requires at most $mathcal O(+sqrtmnLvarepsilon-2)$ first-order oracle (IFO) calls and $mathcal O(Lvarepsilon-2/sqrt1-lambda_W)$ communication rounds.
arXiv Detail & Related papers (2022-10-25T11:37:11Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity [121.83085611327654]
We structured convex optimization problems with additive objective $r:=p + q$, where $r$ is $mu$-strong convex similarity.
We proposed a method to solve problems master to agents' communication and local calls.
The proposed method is much sharper than the $mathcalO(sqrtL_q/mu)$ method.
arXiv Detail & Related papers (2022-05-30T14:28:02Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.