LIAR: Leveraging Inference Time Alignment (Best-of-N) to Jailbreak LLMs in Seconds
- URL: http://arxiv.org/abs/2412.05232v2
- Date: Mon, 10 Feb 2025 16:22:08 GMT
- Title: LIAR: Leveraging Inference Time Alignment (Best-of-N) to Jailbreak LLMs in Seconds
- Authors: James Beetham, Souradip Chakraborty, Mengdi Wang, Furong Huang, Amrit Singh Bedi, Mubarak Shah,
- Abstract summary: LIAR (Leveraging Inference time Alignment to jailbReak) is a fast and efficient best-of-N approach tailored for jailbreak attacks.
Our results demonstrate that a best-of-N approach is a simple yet highly effective strategy for evaluating the robustness of aligned LLMs.
- Score: 98.20826635707341
- License:
- Abstract: Traditional jailbreaks have successfully exposed vulnerabilities in LLMs, primarily relying on discrete combinatorial optimization, while more recent methods focus on training LLMs to generate adversarial prompts. However, both approaches are computationally expensive and slow, often requiring significant resources to generate a single successful attack. We hypothesize that the inefficiency of these methods arises from an inadequate characterization of the jailbreak problem itself. To address this gap, we approach the jailbreak problem as an alignment problem, leading us to propose LIAR (Leveraging Inference time Alignment to jailbReak), a fast and efficient best-of-N approach tailored for jailbreak attacks. LIAR offers several key advantages: it eliminates the need for additional training, operates in a fully black-box setting, significantly reduces computational overhead, and produces more human-readable adversarial prompts while maintaining competitive attack success rates. Our results demonstrate that a best-of-N approach is a simple yet highly effective strategy for evaluating the robustness of aligned LLMs, achieving attack success rates (ASR) comparable to state-of-the-art methods while offering a 10x improvement in perplexity and a significant speedup in Time-to-Attack, reducing execution time from tens of hours to seconds. Additionally, We also provide sub-optimality guarantees for the proposed LIAR. Our work highlights the potential of efficient, alignment-based jailbreak strategies for assessing and stress-testing AI safety measures.
Related papers
- Adversarial Reasoning at Jailbreaking Time [49.70772424278124]
We develop an adversarial reasoning approach to automatic jailbreaking via test-time computation.
Our approach introduces a new paradigm in understanding LLM vulnerabilities, laying the foundation for the development of more robust and trustworthy AI systems.
arXiv Detail & Related papers (2025-02-03T18:59:01Z) - xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
Black-box jailbreak is an attack where crafted prompts bypass safety mechanisms in large language models.
We propose a novel black-box jailbreak method leveraging reinforcement learning (RL)
We introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success.
arXiv Detail & Related papers (2025-01-28T06:07:58Z) - Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models [59.25318174362368]
Jailbreaking in Large Language Models (LLMs) is a major security concern as it can deceive LLMs to generate harmful text.
We conduct a detailed analysis of seven different jailbreak methods and find that disagreements stem from insufficient observation samples.
We propose a novel defense called textbfActivation Boundary Defense (ABD), which adaptively constrains the activations within the safety boundary.
arXiv Detail & Related papers (2024-12-22T14:18:39Z) - GASP: Efficient Black-Box Generation of Adversarial Suffixes for Jailbreaking LLMs [3.096869664709865]
We introduce Generative Adversarial Suffix Prompter (GASP) to improve adversarial suffix creation in a fully black-box setting.
Our experiments show that GASP can generate natural jailbreak prompts, significantly improving attack success rates, reducing training times, and accelerating inference speed.
arXiv Detail & Related papers (2024-11-21T14:00:01Z) - Unlocking Adversarial Suffix Optimization Without Affirmative Phrases: Efficient Black-box Jailbreaking via LLM as Optimizer [33.67942887761857]
We present ECLIPSE, a novel and efficient black-box jailbreaking method utilizing optimizable suffixes.
We employ task prompts to translate jailbreaking goals into natural language instructions, which guides the LLM to generate adversarial suffixes for malicious queries.
ECLIPSE achieves an average attack success rate (ASR) of 0.92 across three open-source LLMs and GPT-3.5-Turbo, significantly surpassing GCG in 2.4 times.
arXiv Detail & Related papers (2024-08-21T03:35:24Z) - Jailbreaking Large Language Models Through Alignment Vulnerabilities in Out-of-Distribution Settings [57.136748215262884]
We introduce ObscurePrompt for jailbreaking LLMs, inspired by the observed fragile alignments in Out-of-Distribution (OOD) data.
We first formulate the decision boundary in the jailbreaking process and then explore how obscure text affects LLM's ethical decision boundary.
Our approach substantially improves upon previous methods in terms of attack effectiveness, maintaining efficacy against two prevalent defense mechanisms.
arXiv Detail & Related papers (2024-06-19T16:09:58Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
We present a systematic analysis of the dependency relationships in jailbreak attack and defense techniques.
We propose three comprehensive, automated, and logical frameworks.
We show that the proposed ensemble jailbreak attack and defense framework significantly outperforms existing research.
arXiv Detail & Related papers (2024-06-06T07:24:41Z) - Efficient LLM Jailbreak via Adaptive Dense-to-sparse Constrained Optimization [46.98249466236357]
Large language models (LLMs) are susceptible to jailbreaking attacks that can generate harmful content.
This paper introduces a novel token-level attack method, Adaptive-to-Sparse Constrained Optimization (ADC), which has been shown to successfully jailbreak multiple open-source LLMs.
arXiv Detail & Related papers (2024-05-15T06:11:24Z) - Distract Large Language Models for Automatic Jailbreak Attack [8.364590541640482]
We propose a novel black-box jailbreak framework for automated red teaming of Large language models.
We designed malicious content concealing and memory reframing with an iterative optimization algorithm to jailbreak LLMs.
arXiv Detail & Related papers (2024-03-13T11:16:43Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
Large Language Models (LLMs) are designed to provide useful and safe responses.
adversarial prompts known as 'jailbreaks' can circumvent safeguards.
We propose ReNeLLM, an automatic framework that leverages LLMs themselves to generate effective jailbreak prompts.
arXiv Detail & Related papers (2023-11-14T16:02:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.