AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens
- URL: http://arxiv.org/abs/2406.03805v1
- Date: Thu, 6 Jun 2024 07:24:41 GMT
- Title: AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens
- Authors: Lin Lu, Hai Yan, Zenghui Yuan, Jiawen Shi, Wenqi Wei, Pin-Yu Chen, Pan Zhou,
- Abstract summary: We present a systematic analysis of the dependency relationships in jailbreak attack and defense techniques.
We propose three comprehensive, automated, and logical frameworks.
We show that the proposed ensemble jailbreak attack and defense framework significantly outperforms existing research.
- Score: 83.08119913279488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Jailbreak attacks in large language models (LLMs) entail inducing the models to generate content that breaches ethical and legal norm through the use of malicious prompts, posing a substantial threat to LLM security. Current strategies for jailbreak attack and defense often focus on optimizing locally within specific algorithmic frameworks, resulting in ineffective optimization and limited scalability. In this paper, we present a systematic analysis of the dependency relationships in jailbreak attack and defense techniques, generalizing them to all possible attack surfaces. We employ directed acyclic graphs (DAGs) to position and analyze existing jailbreak attacks, defenses, and evaluation methodologies, and propose three comprehensive, automated, and logical frameworks. \texttt{AutoAttack} investigates dependencies in two lines of jailbreak optimization strategies: genetic algorithm (GA)-based attacks and adversarial-generation-based attacks, respectively. We then introduce an ensemble jailbreak attack to exploit these dependencies. \texttt{AutoDefense} offers a mixture-of-defenders approach by leveraging the dependency relationships in pre-generative and post-generative defense strategies. \texttt{AutoEvaluation} introduces a novel evaluation method that distinguishes hallucinations, which are often overlooked, from jailbreak attack and defense responses. Through extensive experiments, we demonstrate that the proposed ensemble jailbreak attack and defense framework significantly outperforms existing research.
Related papers
- Rapid Response: Mitigating LLM Jailbreaks with a Few Examples [13.841146655178585]
We develop rapid response techniques to look to block whole classes of jailbreaks after observing only a handful of attacks.
We evaluate five rapid response methods, all of which use jailbreak proliferation.
Our strongest method reduces attack success rate by a factor greater than 240 on an in-distribution set of jailbreaks and a factor greater than 15 on an out-of-distribution set.
arXiv Detail & Related papers (2024-11-12T02:44:49Z) - A Realistic Threat Model for Large Language Model Jailbreaks [87.64278063236847]
In this work, we propose a unified threat model for the principled comparison of jailbreak attacks.
Our threat model combines constraints in perplexity, measuring how far a jailbreak deviates from natural text.
We adapt popular attacks to this new, realistic threat model, with which we, for the first time, benchmark these attacks on equal footing.
arXiv Detail & Related papers (2024-10-21T17:27:01Z) - HSF: Defending against Jailbreak Attacks with Hidden State Filtering [14.031010511732008]
We propose a jailbreak attack defense strategy based on a Hidden State Filter (HSF)
HSF enables the model to preemptively identify and reject adversarial inputs before the inference process begins.
It significantly reduces the success rate of jailbreak attacks while minimally impacting responses to benign user queries.
arXiv Detail & Related papers (2024-08-31T06:50:07Z) - h4rm3l: A Dynamic Benchmark of Composable Jailbreak Attacks for LLM Safety Assessment [48.5611060845958]
We propose a novel benchmark of composable jailbreak attacks to move beyond static datasets and of attacks and harms.
We use h4rm3l to generate a dataset of 2656 successful novel jailbreak attacks targeting 6 state-of-the-art (SOTA) open-source and proprietary LLMs.
Several of our synthesized attacks are more effective than previously reported ones, with Attack Success rates exceeding 90% on SOTA closed language models.
arXiv Detail & Related papers (2024-08-09T01:45:39Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
Large Language Models (LLMs) are increasingly being deployed in safety-critical applications.
LLMs can still be jailbroken by carefully crafted malicious prompts, producing content that violates policy regulations.
We propose a novel EnJa attack to hide harmful instructions using prompt-level jailbreak, boost the attack success rate using a gradient-based attack, and connect the two types of jailbreak attacks via a template-based connector.
arXiv Detail & Related papers (2024-08-07T07:46:08Z) - Jailbreak Attacks and Defenses Against Large Language Models: A Survey [22.392989536664288]
Large Language Models (LLMs) have performed exceptionally in various text-generative tasks.
"jailbreaking" induces the model to generate malicious responses against the usage policy and society.
We propose a comprehensive and detailed taxonomy of jailbreak attack and defense methods.
arXiv Detail & Related papers (2024-07-05T06:57:30Z) - SelfDefend: LLMs Can Defend Themselves against Jailbreaking in a Practical Manner [21.414701448926614]
This paper introduces a generic LLM jailbreak defense framework called SelfDefend.
We empirically validate using the commonly used GPT-3.5/4 models across all major jailbreak attacks.
These models outperform six state-of-the-art defenses and match the performance of GPT-4-based SelfDefend.
arXiv Detail & Related papers (2024-06-08T15:45:31Z) - Adversarial Tuning: Defending Against Jailbreak Attacks for LLMs [13.317364896194903]
We propose a two-stage adversarial tuning framework to enhance Large Language Models' generalized defense capabilities.
In the first stage, we introduce the hierarchical meta-universal adversarial prompt learning to efficiently generate token-level adversarial prompts.
In the second stage, we propose the automatic adversarial prompt learning to iteratively refine semantic-level adversarial prompts.
arXiv Detail & Related papers (2024-06-07T15:37:15Z) - AutoDAN: Interpretable Gradient-Based Adversarial Attacks on Large
Language Models [55.748851471119906]
Safety alignment of Large Language Models (LLMs) can be compromised with manual jailbreak attacks and (automatic) adversarial attacks.
Recent studies suggest that defending against these attacks is possible: adversarial attacks generate unlimited but unreadable gibberish prompts, detectable by perplexity-based filters.
We introduce AutoDAN, an interpretable, gradient-based adversarial attack that merges the strengths of both attack types.
arXiv Detail & Related papers (2023-10-23T17:46:07Z) - AutoDAN: Generating Stealthy Jailbreak Prompts on Aligned Large Language Models [54.95912006700379]
We introduce AutoDAN, a novel jailbreak attack against aligned Large Language Models.
AutoDAN can automatically generate stealthy jailbreak prompts by the carefully designed hierarchical genetic algorithm.
arXiv Detail & Related papers (2023-10-03T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.