ID-like Prompt Learning for Few-Shot Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2311.15243v3
- Date: Fri, 22 Mar 2024 07:05:58 GMT
- Title: ID-like Prompt Learning for Few-Shot Out-of-Distribution Detection
- Authors: Yichen Bai, Zongbo Han, Changqing Zhang, Bing Cao, Xiaoheng Jiang, Qinghua Hu,
- Abstract summary: We propose a novel OOD detection framework that discovers idlike outliers using CLIP citeDBLP:conf/icml/RadfordKHRGASAM21.
Benefiting from the powerful CLIP, we only need a small number of ID samples to learn the prompts of the model.
Our method achieves superior few-shot learning performance on various real-world image datasets.
- Score: 47.16254775587534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-distribution (OOD) detection methods often exploit auxiliary outliers to train model identifying OOD samples, especially discovering challenging outliers from auxiliary outliers dataset to improve OOD detection. However, they may still face limitations in effectively distinguishing between the most challenging OOD samples that are much like in-distribution (ID) data, i.e., \idlike samples. To this end, we propose a novel OOD detection framework that discovers \idlike outliers using CLIP \cite{DBLP:conf/icml/RadfordKHRGASAM21} from the vicinity space of the ID samples, thus helping to identify these most challenging OOD samples. Then a prompt learning framework is proposed that utilizes the identified \idlike outliers to further leverage the capabilities of CLIP for OOD detection. Benefiting from the powerful CLIP, we only need a small number of ID samples to learn the prompts of the model without exposing other auxiliary outlier datasets. By focusing on the most challenging \idlike OOD samples and elegantly exploiting the capabilities of CLIP, our method achieves superior few-shot learning performance on various real-world image datasets (e.g., in 4-shot OOD detection on the ImageNet-1k dataset, our method reduces the average FPR95 by 12.16\% and improves the average AUROC by 2.76\%, compared to state-of-the-art methods). Code is available at https://github.com/ycfate/ID-like.
Related papers
- Going Beyond Conventional OOD Detection [0.0]
Out-of-distribution (OOD) detection is critical to ensure the safe deployment of deep learning models in critical applications.
We present a unified Approach to Spurimatious, fine-grained, and Conventional OOD Detection (ASCOOD)
Our approach effectively mitigates the impact of spurious correlations and encourages capturing fine-grained attributes.
arXiv Detail & Related papers (2024-11-16T13:04:52Z) - Margin-bounded Confidence Scores for Out-of-Distribution Detection [2.373572816573706]
We propose a novel method called Margin bounded Confidence Scores (MaCS) to address the nontrivial OOD detection problem.
MaCS enlarges the disparity between ID and OOD scores, which in turn makes the decision boundary more compact.
Experiments on various benchmark datasets for image classification tasks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-09-22T05:40:25Z) - Diffusion based Semantic Outlier Generation via Nuisance Awareness for Out-of-Distribution Detection [9.936136347796413]
Out-of-distribution (OOD) detection has recently shown promising results through training with synthetic OOD datasets.
We propose a novel framework, Semantic Outlier generation via Nuisance Awareness (SONA), which notably produces challenging outliers.
Our approach incorporates SONA guidance, providing separate control over semantic and nuisance regions of ID samples.
arXiv Detail & Related papers (2024-08-27T07:52:44Z) - Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection [71.93411099797308]
Out-of-distribution (OOD) samples are crucial when deploying machine learning models in open-world scenarios.
We propose to tackle this constraint by leveraging the expert knowledge and reasoning capability of large language models (LLM) to potential Outlier Exposure, termed EOE.
EOE can be generalized to different tasks, including far, near, and fine-language OOD detection.
EOE achieves state-of-the-art performance across different OOD tasks and can be effectively scaled to the ImageNet-1K dataset.
arXiv Detail & Related papers (2024-06-02T17:09:48Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process.
Recent progress in representation learning gives rise to distance-based OOD detection.
We propose Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details.
arXiv Detail & Related papers (2023-08-20T11:56:25Z) - Pseudo Outlier Exposure for Out-of-Distribution Detection using
Pretrained Transformers [3.8839179829686126]
A rejection network can be trained with ID and diverse outlier samples to detect test OOD samples.
We propose a method called Pseudo Outlier Exposure (POE) that constructs a surrogate OOD dataset by sequentially masking tokens related to ID classes.
Our method does not require any external OOD data and can be easily implemented within off-the-shelf Transformers.
arXiv Detail & Related papers (2023-07-18T17:29:23Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
We find surprisingly that simply using reconstruction-based methods could boost the performance of OOD detection significantly.
We take Masked Image Modeling as a pretext task for our OOD detection framework (MOOD)
arXiv Detail & Related papers (2023-02-06T08:24:41Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
Out-of-distribution (OOD) detection is important for machine learning models deployed in the wild.
Recent methods use auxiliary outlier data to regularize the model for improved OOD detection.
We propose a novel framework that leverages wild mixture data -- that naturally consists of both ID and OOD samples.
arXiv Detail & Related papers (2022-02-07T15:38:39Z) - Multi-Task Curriculum Framework for Open-Set Semi-Supervised Learning [54.85397562961903]
Semi-supervised learning (SSL) has been proposed to leverage unlabeled data for training powerful models when only limited labeled data is available.
We address a more complex novel scenario named open-set SSL, where out-of-distribution (OOD) samples are contained in unlabeled data.
Our method achieves state-of-the-art results by successfully eliminating the effect of OOD samples.
arXiv Detail & Related papers (2020-07-22T10:33:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.