論文の概要: Self-Supervised Learning for Graph-Structured Data in Healthcare Applications: A Comprehensive Review
- arxiv url: http://arxiv.org/abs/2412.05312v1
- Date: Thu, 28 Nov 2024 10:51:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-15 08:00:18.886961
- Title: Self-Supervised Learning for Graph-Structured Data in Healthcare Applications: A Comprehensive Review
- Title(参考訳): 医療分野におけるグラフ構造化データの自己指導型学習 : 総合的レビュー
- Authors: Safa Ben Atitallah, Chaima Ben Rabah, Maha Driss, Wadii Boulila, Anis Koubaa,
- Abstract要約: このレビューは、医療におけるグラフ構造化データに自己教師付き学習(SSL)を活用することを目指す研究者と実践者の両方にとって、貴重なリソースになることを目的としている。
私たちの知る限りでは、この研究は、医療におけるグラフデータに適用されたSSLに関する文献の包括的なレビューとして、初めてのものである。
- 参考スコア(独自算出の注目度): 1.5778541636044452
- License:
- Abstract: The abundance of complex and interconnected healthcare data offers numerous opportunities to improve prediction, diagnosis, and treatment. Graph-structured data, which includes entities and their relationships, is well-suited for capturing complex connections. Effectively utilizing this data often requires strong and efficient learning algorithms, especially when dealing with limited labeled data. It is increasingly important for downstream tasks in various domains to utilize self-supervised learning (SSL) as a paradigm for learning and optimizing effective representations from unlabeled data. In this paper, we thoroughly review SSL approaches specifically designed for graph-structured data in healthcare applications. We explore the challenges and opportunities associated with healthcare data and assess the effectiveness of SSL techniques in real-world healthcare applications. Our discussion encompasses various healthcare settings, such as disease prediction, medical image analysis, and drug discovery. We critically evaluate the performance of different SSL methods across these tasks, highlighting their strengths, limitations, and potential future research directions. Ultimately, this review aims to be a valuable resource for both researchers and practitioners looking to utilize SSL for graph-structured data in healthcare, paving the way for improved outcomes and insights in this critical field. To the best of our knowledge, this work represents the first comprehensive review of the literature on SSL applied to graph data in healthcare.
- Abstract(参考訳): 複雑で相互接続された医療データの豊富さは、予測、診断、治療を改善する多くの機会を提供する。
エンティティとそれらの関係を含むグラフ構造化データは、複雑なコネクションをキャプチャするのに適しています。
このデータを有効に活用するには、特にラベル付き限られたデータを扱う場合、強力で効率的な学習アルゴリズムが必要となることが多い。
ラベルのないデータから効果的な表現を学習し、最適化するためのパラダイムとして、自己教師付き学習(SSL)を活用することが、各ドメインの下流タスクにとってますます重要になっている。
本稿では、医療アプリケーションにおけるグラフ構造化データに特化して設計されたSSLアプローチについて、徹底的にレビューする。
我々は、医療データに関連する課題と機会を探求し、現実の医療アプリケーションにおけるSSL技術の有効性を評価する。
本論では, 疾患予測, 医用画像解析, 薬物発見など, さまざまな医療環境について論じる。
これらのタスク間で異なるSSLメソッドのパフォーマンスを批判的に評価し、その強み、制限、そして将来的な研究方向性を明らかにする。
最終的に、このレビューは、ヘルスケアにおけるグラフ構造化データにSSLを活用し、この重要な分野における成果と洞察を改善する方法を模索する研究者と実践者の両方にとって、貴重なリソースになることを目指している。
私たちの知る限りでは、この研究は、医療におけるグラフデータに適用されたSSLに関する文献の包括的なレビューとして、初めてのものである。
関連論文リスト
- A Survey of the Self Supervised Learning Mechanisms for Vision Transformers [5.152455218955949]
視覚タスクにおける自己教師あり学習(SSL)の適用は注目されている。
SSL手法を体系的に分類する包括的分類法を開発した。
SSLの背後にあるモチベーションについて議論し、人気のある事前トレーニングタスクをレビューし、この分野の課題と進歩を強調します。
論文 参考訳(メタデータ) (2024-08-30T07:38:28Z) - Towards Graph Contrastive Learning: A Survey and Beyond [23.109430624817637]
グラフ上の自己教師型学習(SSL)が注目され、大きな進歩を遂げている。
SSLは、未ラベルのグラフデータから情報表現を生成する機械学習モデルを可能にする。
グラフコントラスト学習(GCL)は既存の文献では十分に研究されていない。
論文 参考訳(メタデータ) (2024-05-20T08:19:10Z) - Patchwork Learning: A Paradigm Towards Integrative Analysis across
Diverse Biomedical Data Sources [40.32772510980854]
パッチワーク学習(PL)とは、異なるデータモダリティからなる異なるデータセットからの情報を統合するパラダイムである。
PLはデータのプライバシを保持しながら、補完的なデータソースの同時利用を可能にする。
本稿では、パッチワーク学習の概念とその医療における実装について紹介し、潜在的な機会と適用可能なデータソースを探求する。
論文 参考訳(メタデータ) (2023-05-10T14:50:33Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
一般のコンピュータビジョンコミュニティでは,自己監視学習(SSL)手法が普及し始めている。
医学や手術など、より複雑で影響力のある領域におけるSSLメソッドの有効性は、限定的かつ未調査のままである。
外科的文脈理解,位相認識,ツール存在検出の2つの基本的なタスクに対して,これらの手法の性能をColec80データセット上で広範囲に解析する。
論文 参考訳(メタデータ) (2022-07-01T14:17:11Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
新型コロナウイルスのパンデミックが急速に広がり、世界の医療資源が不足している。
CNNは医療画像の解析に広く利用され、検証されている。
論文 参考訳(メタデータ) (2022-03-24T02:09:41Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCyは、FLと自己教師付き学習を組み合わせた半教師付き学習(FSSL)手法で、ラベル付きビデオとラベルなしビデオの両方の分散データセットを利用する。
外科的段階の自動認識作業において,最先端のFSSL法よりも顕著な性能向上を示した。
論文 参考訳(メタデータ) (2022-03-14T17:44:53Z) - Healthsheet: Development of a Transparency Artifact for Health Datasets [13.57051456780329]
健康に配慮したアンケートデータシートであるHealthsheetを紹介した。
ケーススタディとして、公開可能な3つの医療データセットと連携しています。
論文 参考訳(メタデータ) (2022-02-26T01:05:55Z) - How to Leverage Multimodal EHR Data for Better Medical Predictions? [13.401754962583771]
電子健康記録(EHR)データの複雑さは、ディープラーニングの適用の課題である。
本稿では,まずEHRから臨床ノートを抽出し,これらのデータを統合する方法を提案する。
2つの医療予測タスクの結果、異なるデータを持つ融合モデルが最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-10-29T13:26:05Z) - Graph-based Semi-supervised Learning: A Comprehensive Review [51.26862262550445]
半教師付き学習(ssl)はラベル付きデータとラベルなしデータの両方を利用する能力があるため、実際非常に価値があります。
重要なSSLメソッドのクラスは、グラフベースの半教師付き学習(GSSL)メソッドに対応するグラフとしてデータを自然に表現することです。
GSSLメソッドは、構造のユニークさ、アプリケーションの普遍性、大規模データへのスケーラビリティのために、さまざまなドメインでその利点を実証しています。
論文 参考訳(メタデータ) (2021-02-26T05:11:09Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
新型コロナウイルスの感染拡大で医療資源が不足している。
新型コロナウイルスの診断を緩和するために、さまざまなデータ駆動型ディープラーニングモデルが開発されている。
患者のプライバシー上の懸念から、データそのものはまだ乏しい。
我々は、textbfPartial Networks (FLOP) を用いた、シンプルで効果的な textbfFederated textbfL textbfon Medical データセットを提案する。
論文 参考訳(メタデータ) (2021-02-10T01:56:58Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。