A Compositional Atlas for Algebraic Circuits
- URL: http://arxiv.org/abs/2412.05481v1
- Date: Sat, 07 Dec 2024 00:51:46 GMT
- Title: A Compositional Atlas for Algebraic Circuits
- Authors: Benjie Wang, Denis Deratani Mauá, Guy Van den Broeck, YooJung Choi,
- Abstract summary: We show that a large class of queries correspond to a combination of basic operators over semirings: aggregation, product, and elementwise mapping.
Applying our analysis, we derive novel tractability conditions for many such compositional queries.
- Score: 35.95450187283255
- License:
- Abstract: Circuits based on sum-product structure have become a ubiquitous representation to compactly encode knowledge, from Boolean functions to probability distributions. By imposing constraints on the structure of such circuits, certain inference queries become tractable, such as model counting and most probable configuration. Recent works have explored analyzing probabilistic and causal inference queries as compositions of basic operators to derive tractability conditions. In this paper, we take an algebraic perspective for compositional inference, and show that a large class of queries - including marginal MAP, probabilistic answer set programming inference, and causal backdoor adjustment - correspond to a combination of basic operators over semirings: aggregation, product, and elementwise mapping. Using this framework, we uncover simple and general sufficient conditions for tractable composition of these operators, in terms of circuit properties (e.g., marginal determinism, compatibility) and conditions on the elementwise mappings. Applying our analysis, we derive novel tractability conditions for many such compositional queries. Our results unify tractability conditions for existing problems on circuits, while providing a blueprint for analysing novel compositional inference queries.
Related papers
- The Computational Complexity of Circuit Discovery for Inner Interpretability [0.30723404270319693]
We study circuit discovery with classical and parameterized computational complexity theory.
Our findings reveal a challenging complexity landscape.
This framework allows us to understand the scope and limits of interpretability queries.
arXiv Detail & Related papers (2024-10-10T15:22:48Z) - Counting Solutions to Conjunctive Queries: Structural and Hybrid Tractability [8.618430843854048]
Counting the number of answers to conjunctive queries is a fundamental problem in databases that, under standard assumptions, does not have an efficient solution.
We pinpoint tractable classes by examining the structural properties of intrinsic instances and introducing the novel concept of #-hypertree decomposition.
arXiv Detail & Related papers (2023-11-24T16:09:12Z) - Tractable Bounding of Counterfactual Queries by Knowledge Compilation [51.47174989680976]
We discuss the problem of bounding partially identifiable queries, such as counterfactuals, in Pearlian structural causal models.
A recently proposed iterated EM scheme yields an inner approximation of those bounds by sampling the initialisation parameters.
We show how a single symbolic knowledge compilation allows us to obtain the circuit structure with symbolic parameters to be replaced by their actual values.
arXiv Detail & Related papers (2023-10-05T07:10:40Z) - Compositional Probabilistic and Causal Inference using Tractable Circuit
Models [20.07977560803858]
We introduce md-vtrees, a novel structural formulation of (marginal) determinism in structured decomposable PCs.
We derive the first polytime algorithms for causal inference queries such as backdoor adjustment on PCs.
arXiv Detail & Related papers (2023-04-17T13:48:16Z) - ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs [73.86041481470261]
Cone Embeddings (ConE) is the first geometry-based query embedding model that can handle conjunction, disjunction, and negation.
ConE significantly outperforms existing state-of-the-art methods on benchmark datasets.
arXiv Detail & Related papers (2021-10-26T14:04:02Z) - Structural Learning of Probabilistic Sentential Decision Diagrams under
Partial Closed-World Assumption [127.439030701253]
Probabilistic sentential decision diagrams are a class of structured-decomposable circuits.
We propose a new scheme based on a partial closed-world assumption: data implicitly provide the logical base of the circuit.
Preliminary experiments show that the proposed approach might properly fit training data, and generalize well to test data, provided that these remain consistent with the underlying logical base.
arXiv Detail & Related papers (2021-07-26T12:01:56Z) - A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries [44.36335714431731]
We show how complex inference scenarios for machine learning can be represented in terms of tractable modular operations over circuits.
We derive a unified framework for reasoning about tractable models that generalizes several results in the literature and opens up novel tractable inference scenarios.
arXiv Detail & Related papers (2021-02-11T17:26:32Z) - An Integer Linear Programming Framework for Mining Constraints from Data [81.60135973848125]
We present a general framework for mining constraints from data.
In particular, we consider the inference in structured output prediction as an integer linear programming (ILP) problem.
We show that our approach can learn to solve 9x9 Sudoku puzzles and minimal spanning tree problems from examples without providing the underlying rules.
arXiv Detail & Related papers (2020-06-18T20:09:53Z) - A General Framework for Consistent Structured Prediction with Implicit
Loss Embeddings [113.15416137912399]
We propose and analyze a novel theoretical and algorithmic framework for structured prediction.
We study a large class of loss functions that implicitly defines a suitable geometry on the problem.
When dealing with output spaces with infinite cardinality, a suitable implicit formulation of the estimator is shown to be crucial.
arXiv Detail & Related papers (2020-02-13T10:30:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.