Loss tangent fluctuations due to two-level systems in superconducting microwave resonators
- URL: http://arxiv.org/abs/2412.05482v1
- Date: Sat, 07 Dec 2024 00:57:23 GMT
- Title: Loss tangent fluctuations due to two-level systems in superconducting microwave resonators
- Authors: A. Vallières, M. E. Russell, X. You, D. A. Garcia-Wetten, D. P. Goronzy, M. J. Walker, M. J. Bedzyk, M. C. Hersam, A. Romanenko, Y. Lu, A. Grassellino, J. Koch, C. R. H. McRae,
- Abstract summary: Superconducting microwave resonators are critical to quantum computing and sensing technologies.
We investigate large temporal fluctuations of $Q_i$ at low powers over periods of 12 to 16 hours.
- Score: 0.0
- License:
- Abstract: Superconducting microwave resonators are critical to quantum computing and sensing technologies. Additionally, they are common proxies for superconducting qubits when determining the effects of performance-limiting loss mechanisms such as from two-level systems (TLS). The extraction of these loss mechanisms is often performed by measuring the internal quality factor $Q_i$ as a function of power or temperature. In this work, we investigate large temporal fluctuations of $Q_i$ at low powers over periods of 12 to 16 hours (relative standard deviation $\sigma_{Qi}/Q_i = 13\%$). These fluctuations are ubiquitous across multiple resonators, chips and cooldowns. We are able to attribute these fluctuations to variations in the TLS loss tangent due to two main indicators. First, measured fluctuations decrease as power and temperature increase. Second, for interleaved measurements, we observe correlations between low- and medium-power $Q_i$ fluctuations and an absence of correlations with high-power fluctuations. Agreement with the TLS loss tangent mean is obtained by performing measurements over a time span of a few hours. We hypothesize that, in addition to decoherence due to coupling to individual near-resonant TLS, superconducting qubits are affected by these observed TLS loss tangent fluctuations.
Related papers
- Disentangling the Impact of Quasiparticles and Two-Level Systems on the Statistics of Superconducting Qubit Lifetime [31.874825130479174]
Temporal fluctuations in the superconducting qubit lifetime, $T_$, bring up additional challenges in building a fault-tolerant quantum computer.
We report $T_$ measurements on the qubits with different geometrical footprints and surface dielectrics as a function of the temperature.
We find that $Gamma_$ variances in the qubit with a small footprint are more susceptible to the QP and TLS fluctuations than those in the large-footprint qubits.
arXiv Detail & Related papers (2024-09-16T02:02:55Z) - Characterization of loss mechanisms in a fluxonium qubit [25.014343643597424]
We characterize a fluxonium qubit with in situ tunability of its Josephson energy at different flux biases and different Josephson energy values.
The relaxation rate at qubit energy values, ranging more than one order of magnitude around the thermal energy $k_B T$, can be quantitatively explained by a combination of dielectric loss and $1/f$ flux noise with a crossover point.
In particular, as increasing Josephson energy thus decreasing qubit frequency at the flux insensitive spot, we find that the qubit exhibits increasingly weaker coupling to TLS defects.
arXiv Detail & Related papers (2023-02-16T06:19:12Z) - Precision measurement of the microwave dielectric loss of sapphire in
the quantum regime with parts-per-billion sensitivity [50.591267188664666]
Dielectric loss is known to limit state-of-the-art superconducting qubit lifetimes.
Recent experiments imply upper bounds on bulk dielectric loss tangents on the order of $100$ parts-per-billion.
We have devised a measurement method capable of separating and resolving bulk dielectric loss with a sensitivity at the level of $5$ parts per billion.
arXiv Detail & Related papers (2022-06-29T00:14:11Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Experimentally revealing anomalously large dipoles in a quantum-circuit
dielectric [50.591267188664666]
Two-level systems (TLSs) intrinsic to glasses induce decoherence in many modern quantum devices.
We show the existence of two distinct ensembles of TLSs, interacting weakly and strongly with phonons.
Results may shed new light on the low temperature characteristics of amorphous solids.
arXiv Detail & Related papers (2021-10-20T19:42:22Z) - Anomalous Loss Reduction Below Two-Level System Saturation in Aluminum
Superconducting Resonators [0.0]
capacitively-coupled aluminum half-wavelength coplanar waveguide resonators are investigated.
Two-level systems (TLS) become the dominant source of loss in the few-photon and low temperature regime.
arXiv Detail & Related papers (2021-09-24T04:29:21Z) - Frequency fluctuations of ferromagnetic resonances at milliKelvin
temperatures [50.591267188664666]
Noise is detrimental to device performance, especially for quantum coherent circuits.
Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on single magnons to superconducting qubits.
Researching the temporal behavior can help to identify the underlying noise sources.
arXiv Detail & Related papers (2021-07-14T08:00:37Z) - Non-Markovian Effects of Two-Level Systems in a Niobium Coaxial
Resonator with a Single-Photon Lifetime of 10 ms [0.0]
Coherence of two-level systems (TLS) has to be considered to accurately describe the ring-down dynamics of a coaxial quarter-wave resonator.
We observe long-term effects on the cavity decay due to coherent elastic scattering between the resonator field and the TLS.
This model provides an accurate prediction of the internal quality factor's temperature dependence.
arXiv Detail & Related papers (2021-02-19T16:36:18Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Two-level systems in superconducting quantum devices due to trapped
quasiparticles [0.0]
We show that non-equilibrium quasiparticles can induce qubit relaxation in superconducting quantum circuits.
Our results imply that trapped QPs can induce qubit relaxation.
arXiv Detail & Related papers (2020-04-06T08:38:28Z) - Thermal coupling and effect of subharmonic synchronization in a system
of two VO2 based oscillators [55.41644538483948]
We explore a prototype of an oscillatory neural network (ONN) based on vanadium dioxide switching devices.
The effective action radius RTC of coupling depends both on the total energy released during switching and on the average power.
In the case of a strong thermal coupling, the limit of the supply current parameters, for which the oscillations exist, expands by 10 %.
The effect of subharmonic synchronization hold promise for application in classification and pattern recognition.
arXiv Detail & Related papers (2020-01-06T03:26:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.