WavFusion: Towards wav2vec 2.0 Multimodal Speech Emotion Recognition
- URL: http://arxiv.org/abs/2412.05558v1
- Date: Sat, 07 Dec 2024 06:43:39 GMT
- Title: WavFusion: Towards wav2vec 2.0 Multimodal Speech Emotion Recognition
- Authors: Feng Li, Jiusong Luo, Wanjun Xia,
- Abstract summary: We propose WavFusion, a multimodal speech emotion recognition framework.
WavFusion addresses critical research problems in effective multimodal fusion, among modalities, and discriminative representation learning.
Our work highlights the importance of capturing nuanced cross-modal interactions and learning discriminative representations for accurate multimodal SER.
- Score: 2.3367170233149324
- License:
- Abstract: Speech emotion recognition (SER) remains a challenging yet crucial task due to the inherent complexity and diversity of human emotions. To address this problem, researchers attempt to fuse information from other modalities via multimodal learning. However, existing multimodal fusion techniques often overlook the intricacies of cross-modal interactions, resulting in suboptimal feature representations. In this paper, we propose WavFusion, a multimodal speech emotion recognition framework that addresses critical research problems in effective multimodal fusion, heterogeneity among modalities, and discriminative representation learning. By leveraging a gated cross-modal attention mechanism and multimodal homogeneous feature discrepancy learning, WavFusion demonstrates improved performance over existing state-of-the-art methods on benchmark datasets. Our work highlights the importance of capturing nuanced cross-modal interactions and learning discriminative representations for accurate multimodal SER. Experimental results on two benchmark datasets (IEMOCAP and MELD) demonstrate that WavFusion succeeds over the state-of-the-art strategies on emotion recognition.
Related papers
- A Novel Approach to for Multimodal Emotion Recognition : Multimodal semantic information fusion [3.1409950035735914]
This paper proposes a novel multimodal emotion recognition approach, DeepMSI-MER, based on the integration of contrastive learning and visual sequence compression.
Experimental results on two public datasets, IEMOCAP and MELD, demonstrate that DeepMSI-MER significantly improves the accuracy and robustness of emotion recognition.
arXiv Detail & Related papers (2025-02-12T17:07:43Z) - AIMDiT: Modality Augmentation and Interaction via Multimodal Dimension Transformation for Emotion Recognition in Conversations [57.99479708224221]
We propose a novel framework called AIMDiT to solve the problem of multimodal fusion of deep features.
Experiments conducted using our AIMDiT framework on the public benchmark dataset MELD reveal 2.34% and 2.87% improvements in terms of the Acc-7 and w-F1 metrics.
arXiv Detail & Related papers (2024-04-12T11:31:18Z) - Joint Multimodal Transformer for Emotion Recognition in the Wild [49.735299182004404]
Multimodal emotion recognition (MMER) systems typically outperform unimodal systems.
This paper proposes an MMER method that relies on a joint multimodal transformer (JMT) for fusion with key-based cross-attention.
arXiv Detail & Related papers (2024-03-15T17:23:38Z) - From Text to Pixels: A Context-Aware Semantic Synergy Solution for
Infrared and Visible Image Fusion [66.33467192279514]
We introduce a text-guided multi-modality image fusion method that leverages the high-level semantics from textual descriptions to integrate semantics from infrared and visible images.
Our method not only produces visually superior fusion results but also achieves a higher detection mAP over existing methods, achieving state-of-the-art results.
arXiv Detail & Related papers (2023-12-31T08:13:47Z) - Adversarial Representation with Intra-Modal and Inter-Modal Graph Contrastive Learning for Multimodal Emotion Recognition [14.639340916340801]
We propose a novel Adversarial Representation with Intra-Modal and Inter-Modal Graph Contrastive for Multimodal Emotion Recognition (AR-IIGCN) method.
Firstly, we input video, audio, and text features into a multi-layer perceptron (MLP) to map them into separate feature spaces.
Secondly, we build a generator and a discriminator for the three modal features through adversarial representation.
Thirdly, we introduce contrastive graph representation learning to capture intra-modal and inter-modal complementary semantic information.
arXiv Detail & Related papers (2023-12-28T01:57:26Z) - Joyful: Joint Modality Fusion and Graph Contrastive Learning for
Multimodal Emotion Recognition [18.571931295274975]
Multimodal emotion recognition aims to recognize emotions for each utterance of multiple modalities.
Current graph-based methods fail to simultaneously depict global contextual features and local diverse uni-modal features in a dialogue.
We propose a method for joint modality fusion and graph contrastive learning for multimodal emotion recognition (Joyful)
arXiv Detail & Related papers (2023-11-18T08:21:42Z) - Multimodal Prompt Transformer with Hybrid Contrastive Learning for
Emotion Recognition in Conversation [9.817888267356716]
multimodal Emotion Recognition in Conversation (ERC) faces two problems.
Deep emotion cues extraction was performed on modalities with strong representation ability.
Feature filters were designed as multimodal prompt information for modalities with weak representation ability.
MPT embeds multimodal fusion information into each attention layer of the Transformer.
arXiv Detail & Related papers (2023-10-04T13:54:46Z) - MIR-GAN: Refining Frame-Level Modality-Invariant Representations with
Adversarial Network for Audio-Visual Speech Recognition [23.042478625584653]
We propose an adversarial network to refine frame-level modality-invariant representations (MIR-GAN)
In particular, we propose an adversarial network to refine frame-level modality-invariant representations (MIR-GAN)
arXiv Detail & Related papers (2023-06-18T14:02:20Z) - Group Gated Fusion on Attention-based Bidirectional Alignment for
Multimodal Emotion Recognition [63.07844685982738]
This paper presents a new model named as Gated Bidirectional Alignment Network (GBAN), which consists of an attention-based bidirectional alignment network over LSTM hidden states.
We empirically show that the attention-aligned representations outperform the last-hidden-states of LSTM significantly.
The proposed GBAN model outperforms existing state-of-the-art multimodal approaches on the IEMOCAP dataset.
arXiv Detail & Related papers (2022-01-17T09:46:59Z) - Channel Exchanging Networks for Multimodal and Multitask Dense Image
Prediction [125.18248926508045]
We propose Channel-Exchanging-Network (CEN) which is self-adaptive, parameter-free, and more importantly, applicable for both multimodal fusion and multitask learning.
CEN dynamically exchanges channels betweenworks of different modalities.
For the application of dense image prediction, the validity of CEN is tested by four different scenarios.
arXiv Detail & Related papers (2021-12-04T05:47:54Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality pedestrian retrieval problem.
Existing VI-ReID methods tend to learn global representations, which have limited discriminability and weak robustness to noisy images.
We propose a novel dynamic dual-attentive aggregation (DDAG) learning method by mining both intra-modality part-level and cross-modality graph-level contextual cues for VI-ReID.
arXiv Detail & Related papers (2020-07-18T03:08:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.