Neighborhood Commonality-aware Evolution Network for Continuous Generalized Category Discovery
- URL: http://arxiv.org/abs/2412.05573v1
- Date: Sat, 07 Dec 2024 07:41:41 GMT
- Title: Neighborhood Commonality-aware Evolution Network for Continuous Generalized Category Discovery
- Authors: Ye Wang, Yaxiong Wang, Guoshuai Zhao, Xueming Qian,
- Abstract summary: Continuous Generalized Category Discovery (C-GCD) aims to continually discover novel classes from unlabelled image sets.
We propose a novel learning framework, dubbed Neighborhood Commonality-aware Evolution Network (NCENet) that conquers this task from the perspective of representation learning.
- Score: 23.90555521006653
- License:
- Abstract: Continuous Generalized Category Discovery (C-GCD) aims to continually discover novel classes from unlabelled image sets while maintaining performance on old classes. In this paper, we propose a novel learning framework, dubbed Neighborhood Commonality-aware Evolution Network (NCENet) that conquers this task from the perspective of representation learning. Concretely, to learn discriminative representations for novel classes, a Neighborhood Commonality-aware Representation Learning (NCRL) is designed, which exploits local commonalities derived neighborhoods to guide the learning of representational differences between instances of different classes. To maintain the representation ability for old classes, a Bi-level Contrastive Knowledge Distillation (BCKD) module is designed, which leverages contrastive learning to perceive the learning and learned knowledge and conducts knowledge distillation. Extensive experiments conducted on CIFAR10, CIFAR100, and Tiny-ImageNet demonstrate the superior performance of NCENet compared to the previous state-of-the-art method. Particularly, in the last incremental learning session on CIFAR100, the clustering accuracy of NCENet outperforms the second-best method by a margin of 3.09\% on old classes and by a margin of 6.32\% on new classes. Our code will be publicly available at \href{https://github.com/xjtuYW/NCENet.git}{https://github.com/xjtuYW/NCENet.git}. \end{abstract}
Related papers
- Happy: A Debiased Learning Framework for Continual Generalized Category Discovery [54.54153155039062]
This paper explores the underexplored task of Continual Generalized Category Discovery (C-GCD)
C-GCD aims to incrementally discover new classes from unlabeled data while maintaining the ability to recognize previously learned classes.
We introduce a debiased learning framework, namely Happy, characterized by Hardness-aware prototype sampling and soft entropy regularization.
arXiv Detail & Related papers (2024-10-09T04:18:51Z) - Knowledge Adaptation Network for Few-Shot Class-Incremental Learning [23.90555521006653]
Few-shot class-incremental learning aims to incrementally recognize new classes using a few samples.
One of the effective methods to solve this challenge is to construct prototypical evolution classifiers.
Because representations for new classes are weak and biased, we argue such a strategy is suboptimal.
arXiv Detail & Related papers (2024-09-18T07:51:38Z) - Towards Non-Exemplar Semi-Supervised Class-Incremental Learning [33.560003528712414]
Class-incremental learning aims to gradually recognize new classes while maintaining the discriminability of old ones.
We propose a non-exemplar semi-supervised CIL framework with contrastive learning and semi-supervised incremental prototype classifier (Semi-IPC)
Semi-IPC learns a prototype for each class with unsupervised regularization, enabling the model to incrementally learn from partially labeled new data.
arXiv Detail & Related papers (2024-03-27T06:28:19Z) - Enhancing Visual Continual Learning with Language-Guided Supervision [76.38481740848434]
Continual learning aims to empower models to learn new tasks without forgetting previously acquired knowledge.
We argue that the scarce semantic information conveyed by the one-hot labels hampers the effective knowledge transfer across tasks.
Specifically, we use PLMs to generate semantic targets for each class, which are frozen and serve as supervision signals.
arXiv Detail & Related papers (2024-03-24T12:41:58Z) - Learning Prompt with Distribution-Based Feature Replay for Few-Shot Class-Incremental Learning [56.29097276129473]
We propose a simple yet effective framework, named Learning Prompt with Distribution-based Feature Replay (LP-DiF)
To prevent the learnable prompt from forgetting old knowledge in the new session, we propose a pseudo-feature replay approach.
When progressing to a new session, pseudo-features are sampled from old-class distributions combined with training images of the current session to optimize the prompt.
arXiv Detail & Related papers (2024-01-03T07:59:17Z) - NAPA-VQ: Neighborhood Aware Prototype Augmentation with Vector
Quantization for Continual Learning [0.0]
Catastrophic forgetting, the loss of old knowledge upon acquiring new knowledge, is a pitfall faced by deep neural networks in real-world applications.
We propose NAPA-VQ: Neighborhood Aware Prototype Augmentation with Vector Quantization, a framework that reduces this class overlap in NECIL.
Our comprehensive experiments on CIFAR-100, TinyImageNet, and ImageNet-Subset demonstrate that NAPA-VQ outperforms the State-of-the-art NECIL methods by an average improvement of 5%, 2%, and 4% in accuracy and 10%, 3%, and 9% in forgetting respectively.
arXiv Detail & Related papers (2023-08-18T04:47:39Z) - Class-Incremental Learning: A Survey [84.30083092434938]
Class-Incremental Learning (CIL) enables the learner to incorporate the knowledge of new classes incrementally.
CIL tends to catastrophically forget the characteristics of former ones, and its performance drastically degrades.
We provide a rigorous and unified evaluation of 17 methods in benchmark image classification tasks to find out the characteristics of different algorithms.
arXiv Detail & Related papers (2023-02-07T17:59:05Z) - PromptCAL: Contrastive Affinity Learning via Auxiliary Prompts for
Generalized Novel Category Discovery [39.03732147384566]
Generalized Novel Category Discovery (GNCD) setting aims to categorize unlabeled training data coming from known and novel classes.
We propose Contrastive Affinity Learning method with auxiliary visual Prompts, dubbed PromptCAL, to address this challenging problem.
Our approach discovers reliable pairwise sample affinities to learn better semantic clustering of both known and novel classes for the class token and visual prompts.
arXiv Detail & Related papers (2022-12-11T20:06:14Z) - Open Long-Tailed Recognition in a Dynamic World [82.91025831618545]
Real world data often exhibits a long-tailed and open-ended (with unseen classes) distribution.
A practical recognition system must balance between majority (head) and minority (tail) classes, generalize across the distribution, and acknowledge novelty upon the instances of unseen classes (open classes)
We define Open Long-Tailed Recognition++ as learning from such naturally distributed data and optimizing for the classification accuracy over a balanced test set.
arXiv Detail & Related papers (2022-08-17T15:22:20Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks.
We propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI)
In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks.
arXiv Detail & Related papers (2020-12-31T08:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.