Real-Time 3D Object Detection Using InnovizOne LiDAR and Low-Power Hailo-8 AI Accelerator
- URL: http://arxiv.org/abs/2412.05594v1
- Date: Sat, 07 Dec 2024 09:19:55 GMT
- Title: Real-Time 3D Object Detection Using InnovizOne LiDAR and Low-Power Hailo-8 AI Accelerator
- Authors: Itay Krispin-Avraham, Roy Orfaig, Ben-Zion Bobrovsky,
- Abstract summary: We present the feasibility of performing real-time 3D object detection of cars using 3D point clouds from a LiDAR sensor.
We successfully achieved real-time inference at a rate of approximately 5Hz with a high accuracy of 0.91% F1.
This work demonstrates that effective real-time 3D object detection can be achieved on low-cost, low-power hardware.
- Score: 0.6144680854063939
- License:
- Abstract: Object detection is a significant field in autonomous driving. Popular sensors for this task include cameras and LiDAR sensors. LiDAR sensors offer several advantages, such as insensitivity to light changes, like in a dark setting and the ability to provide 3D information in the form of point clouds, which include the ranges of objects. However, 3D detection methods, such as PointPillars, typically require high-power hardware. Additionally, most common spinning LiDARs are sparse and may not achieve the desired quality of object detection in front of the car. In this paper, we present the feasibility of performing real-time 3D object detection of cars using 3D point clouds from a LiDAR sensor, processed and deployed on a low-power Hailo-8 AI accelerator. The LiDAR sensor used in this study is the InnovizOne sensor, which captures objects in higher quality compared to spinning LiDAR techniques, especially for distant objects. We successfully achieved real-time inference at a rate of approximately 5Hz with a high accuracy of 0.91% F1 score, with only -0.2% degradation compared to running the same model on an NVIDIA GeForce RTX 2080 Ti. This work demonstrates that effective real-time 3D object detection can be achieved on low-cost, low-power hardware, representing a significant step towards more accessible autonomous driving technologies. The source code and the pre-trained models are available at https://github.com/AIROTAU/ PointPillarsHailoInnoviz/tree/main
Related papers
- FADet: A Multi-sensor 3D Object Detection Network based on Local Featured Attention [2.332328100695052]
Camera, LiDAR and radar are common perception sensors for autonomous driving tasks.
To exploit their abilities wisely remains a challenge because each of these sensors has its own characteristics.
We propose FADet, a multi-sensor 3D detection network, which specifically studies the characteristics of different sensors.
arXiv Detail & Related papers (2024-05-19T21:52:50Z) - Sparse Points to Dense Clouds: Enhancing 3D Detection with Limited LiDAR Data [68.18735997052265]
We propose a balanced approach that combines the advantages of monocular and point cloud-based 3D detection.
Our method requires only a small number of 3D points, that can be obtained from a low-cost, low-resolution sensor.
The accuracy of 3D detection improves by 20% compared to the state-of-the-art monocular detection methods.
arXiv Detail & Related papers (2024-04-10T03:54:53Z) - Better Monocular 3D Detectors with LiDAR from the Past [64.6759926054061]
Camera-based 3D detectors often suffer inferior performance compared to LiDAR-based counterparts due to inherent depth ambiguities in images.
In this work, we seek to improve monocular 3D detectors by leveraging unlabeled historical LiDAR data.
We show consistent and significant performance gain across multiple state-of-the-art models and datasets with a negligible additional latency of 9.66 ms and a small storage cost.
arXiv Detail & Related papers (2024-04-08T01:38:43Z) - CR3DT: Camera-RADAR Fusion for 3D Detection and Tracking [40.630532348405595]
Camera-RADAR 3D Detection and Tracking (CR3DT) is a camera-RADAR fusion model for 3D object detection, and Multi-Object Tracking (MOT)
Building upon the foundations of the State-of-the-Art (SotA) camera-only BEVDet architecture, CR3DT demonstrates substantial improvements in both detection and tracking capabilities.
arXiv Detail & Related papers (2024-03-22T16:06:05Z) - FocalFormer3D : Focusing on Hard Instance for 3D Object Detection [97.56185033488168]
False negatives (FN) in 3D object detection can lead to potentially dangerous situations in autonomous driving.
In this work, we propose Hard Instance Probing (HIP), a general pipeline that identifies textitFN in a multi-stage manner.
We instantiate this method as FocalFormer3D, a simple yet effective detector that excels at excavating difficult objects.
arXiv Detail & Related papers (2023-08-08T20:06:12Z) - LinK3D: Linear Keypoints Representation for 3D LiDAR Point Cloud [18.942933892804028]
We propose a novel 3D feature representation method: Linear Keypoints representation for 3D LiDAR point cloud, called LinK3D.
LinK3D shows excellent real-time performance, faster than the sensor frame rate at 10 Hz of a typical rotating LiDAR sensor.
Our method can be extended to LiDAR odometry task, and shows good scalability.
arXiv Detail & Related papers (2022-06-13T06:50:56Z) - A Lightweight and Detector-free 3D Single Object Tracker on Point Clouds [50.54083964183614]
It is non-trivial to perform accurate target-specific detection since the point cloud of objects in raw LiDAR scans is usually sparse and incomplete.
We propose DMT, a Detector-free Motion prediction based 3D Tracking network that totally removes the usage of complicated 3D detectors.
arXiv Detail & Related papers (2022-03-08T17:49:07Z) - Multimodal Virtual Point 3D Detection [6.61319085872973]
Lidar-based sensing drives current autonomous vehicles.
Current Lidar sensors lag two decades behind traditional color cameras in terms of resolution and cost.
We present an approach to seamlessly fuse RGB sensors into Lidar-based 3D recognition.
arXiv Detail & Related papers (2021-11-12T18:58:01Z) - PC-DAN: Point Cloud based Deep Affinity Network for 3D Multi-Object
Tracking (Accepted as an extended abstract in JRDB-ACT Workshop at CVPR21) [68.12101204123422]
A point cloud is a dense compilation of spatial data in 3D coordinates.
We propose a PointNet-based approach for 3D Multi-Object Tracking (MOT)
arXiv Detail & Related papers (2021-06-03T05:36:39Z) - Sparse LiDAR and Stereo Fusion (SLS-Fusion) for Depth Estimationand 3D
Object Detection [3.5488685789514736]
SLS-Fusion is a new approach to fuse data from 4-beam LiDAR and a stereo camera via a neural network for depth estimation.
Since 4-beam LiDAR is cheaper than the well-known 64-beam LiDAR, this approach is also classified as a low-cost sensors-based method.
arXiv Detail & Related papers (2021-03-05T23:10:09Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.